Page 67 - IJB-7-4
P. 67

Lin, et al.
           138.  Hong  H,  Seo  YB,  Kim  DY,  et  al., 2020, Digital  Light   2000 Patients in the EURAMOS-1 (European and American
               Processing 3D Printed Silk Fibroin Hydrogel for Cartilage   Osteosarcoma Study) Cohort. Eur J Cancer, 109:36–50.
               Tissue Engineering. Biomaterials, 232:119679.       https://doi.org/10.1016/j.ejca.2018.11.027
               https://doi.org/10.1016/j.biomaterials.2019.119679  150.  Hu MC,  Yao  ZH, Liu  XG,  et  al.,  2018,  Enhancement
           139.  Bae H, Puranik A, Gauvin R, et al., 2012, Building Vascular   Mechanism of Hydroxyapatite for Photocatalytic Degradation
               Networks. Sci Transl Med, 4:160.                    of Gaseous  Formaldehyde over  TiO /Hydroxyapatite.
                                                                                                  2
               https://doi.org/10.1126/scitranslmed.3003688        J Taiwan Inst Chem Eng, 85:91–7.
           140.  Nomi  M,  Atala  A,  Coppi  PD,  et al., 2003, Principals of      https://doi.org/10.1016/j.jtice.2017.12.021
               Neovascularization for Tissue Engineering. Mol Aspect Med,   151.  Kebede MA, Asiku KS, Imae T, et al., 2018, Stereolithographic
               23:463–83.                                          and  Molding  Fabrications  of  Hydroxyapatite-polymer  Gels
               https://doi.org/10.1016/s0098-2997(02)00008-0       Applicable to Bone Regeneration  Materials.  J  Taiwan Inst
           141.  Novosel EC, Kleinhans C, Kluger PJ, 2011, Vascularization   Chem Eng, 92:91–6.
               is the Key Challenge in Tissue Engineering. Adv Drug Deliv      https://doi.org/10.1016/j.jtice.2018.01.034
               Rev, 63:300–11.                                 152.  Huang L, Lu W, Liu M, et al., 2017, Facile Preparation of
               https://doi.org/10.1016/j.addr.2011.03.004          Eu  and F co-Doped Luminescent Hydroxyapatite Polymer
                                                                     3+
           142.  Zhang  YS,  Khademhosseini  A,  2015,  Seeking  the  Right   Composites via the Photo-RAFT Polymerization. J Taiwan
               Context  for Evaluating  Nanomedicine:  From  Tissue   Inst Chem Eng, 83:184–91.
               Models  in  Petri  Dishes  to  Microfluidic  Organs-on-a-Chip.      https://doi.org/10.1016/j.jtice.2017.12.006
               Nanomedicine, 10:685–8.                         153.  Mehdi  R,  Amir  S, Mohammad  MD,  et  al.,  2019,
               https://doi.org/10.2217/nnm.15.18                   Multifunctional  Gelatin  Tricalcium  Phosphate  Porous
           143.  Jia W, Gungor-Ozkerim PS, Yu SZ, et al., 2016, Direct 3D   Nanocomposite Scaffolds for Tissue Engineering and Local
               Bioprinting of Perfusable Vascular Constructs Using a Blend   Drug Delivery: In Vitro and In Vivo Studies. J Taiwan Inst
               Bioink. Biomaterials, 106:58–68.                    Chem Eng, 101:214–20.
               https://doi.org/10.1016/j.biomaterials.2016.07.038     https://doi.org/10.1016/j. jtice.2019.04.028
           144.  Suntornnond R, Tan E, An J, et al., 2017, A Highly Printable   154.  Cheng  L,  Wang  C,  Feng  L,  et al.,  2014,  Functional
               and Biocompatible Hydrogel Composite for Direct Printing   Nanomaterials  for Phototherapies  of Cancer.  Chin  J  Clin
               of Soft and Perfusable Vasculature-like Structures. Sci Rep,   Oncol, 114:10869–939.
               7:16902.                                            https://doi.org/10.1021/cr400532z
               https://doi.org/10.1038/s41598-017-17198-0      155.  Ma  H, Jiang  C,  Dong Z,  et  al.,  2016,  A  Bifunctional
           145.  Zhang  Y,  Yu  Y,  Chen  H,  et al., 2013, Characterization   Biomaterial with Photothermal Effect forTumor Therapy and
               of  Printable  Cellular  Micro-fluidic  Channels  for  Tissue   Bone Regeneration. Adv Funct Mater, 26:1197–208.
               Engineering. Biofabrication, 5:025004.              https://doi.org/10.1021/cr400532z
               https://doi.org/10.1088/1758-5082/5/2/025004    156.  Qu Y, Chu BY, Peng JR, et al., 2015, A Biodegradable Thermo-
           146.  Isakoff MS, Bielack SS, Meltzer P, et al., 2015, Osteosarcoma:   responsive Hybrid Hydrogel:  Therapeutic  Applications in
               Current Treatment and a Collaborative Pathway to Success.   Preventing the Post-operative Recurrence of Breast Cancer.
               J Clin Oncol, 33:3029–35.                           Npg Asia Mater, 7:e207.
               https://doi.org/10.1200/JCO.2014.59.4895            https://doi.org/10.1038/am.2015.83
           147.  Italiano  A,  Mir  O,  Cioffi  A,  et al.,  2013, Advanced   157.  Wang  X,  Li T,  Ma  H,  et  al.,  2017, A  3D-printed  Scaffold
               Chondrosarcomas: Role of Chemotherapy and Survival. Ann   with MoS2 Nanosheets for  Tumor  Therapy and  Tissue
               Oncol, 24:2916–22.                                  Regeneration. Npg Asia Mater, 9:e376.
               https://doi.org/10.1093/annonc/mdt374               https://doi.org/10.1038/am.2017.47
           148.  Gaspar  N,  Hawkins  DS,  Dirksen  U,  et  al.,  2016,  Ewing   158.  Liu  HH,  Lin  ML,  Liu  X,  et al., 2020, Doping Bioactive
               Sarcoma:  Current Management  and Future  Approaches   Elements  into  a  Collagen  Scaffold  Based  on  Synchronous
               Through Collaboration. J Clin Oncol, 33:3036–46.    Self-assembly/Mineralization for Bone Tissue Engineering.
               https://doi.org/10.1200/JCO.2014.59.5256            Bioactive Mater, 5:844–58.
           149.  Smeland  S,  Bielack  SS,  Whelan  J,  et al., 2019, Survival      https://doi.org/10.1016/j. bioactmat.2020.06.005
               and Prognosis with Osteosarcoma: Outcomes in more than   159.  Wang XC, Xue JM, Ma B, et al., 2020, Black Bioceramics:

                                       International Journal of Bioprinting (2021)–Volume 7, Issue 4        63
   62   63   64   65   66   67   68   69   70   71   72