Page 67 - IJB-7-4
P. 67
Lin, et al.
138. Hong H, Seo YB, Kim DY, et al., 2020, Digital Light 2000 Patients in the EURAMOS-1 (European and American
Processing 3D Printed Silk Fibroin Hydrogel for Cartilage Osteosarcoma Study) Cohort. Eur J Cancer, 109:36–50.
Tissue Engineering. Biomaterials, 232:119679. https://doi.org/10.1016/j.ejca.2018.11.027
https://doi.org/10.1016/j.biomaterials.2019.119679 150. Hu MC, Yao ZH, Liu XG, et al., 2018, Enhancement
139. Bae H, Puranik A, Gauvin R, et al., 2012, Building Vascular Mechanism of Hydroxyapatite for Photocatalytic Degradation
Networks. Sci Transl Med, 4:160. of Gaseous Formaldehyde over TiO /Hydroxyapatite.
2
https://doi.org/10.1126/scitranslmed.3003688 J Taiwan Inst Chem Eng, 85:91–7.
140. Nomi M, Atala A, Coppi PD, et al., 2003, Principals of https://doi.org/10.1016/j.jtice.2017.12.021
Neovascularization for Tissue Engineering. Mol Aspect Med, 151. Kebede MA, Asiku KS, Imae T, et al., 2018, Stereolithographic
23:463–83. and Molding Fabrications of Hydroxyapatite-polymer Gels
https://doi.org/10.1016/s0098-2997(02)00008-0 Applicable to Bone Regeneration Materials. J Taiwan Inst
141. Novosel EC, Kleinhans C, Kluger PJ, 2011, Vascularization Chem Eng, 92:91–6.
is the Key Challenge in Tissue Engineering. Adv Drug Deliv https://doi.org/10.1016/j.jtice.2018.01.034
Rev, 63:300–11. 152. Huang L, Lu W, Liu M, et al., 2017, Facile Preparation of
https://doi.org/10.1016/j.addr.2011.03.004 Eu and F co-Doped Luminescent Hydroxyapatite Polymer
3+
142. Zhang YS, Khademhosseini A, 2015, Seeking the Right Composites via the Photo-RAFT Polymerization. J Taiwan
Context for Evaluating Nanomedicine: From Tissue Inst Chem Eng, 83:184–91.
Models in Petri Dishes to Microfluidic Organs-on-a-Chip. https://doi.org/10.1016/j.jtice.2017.12.006
Nanomedicine, 10:685–8. 153. Mehdi R, Amir S, Mohammad MD, et al., 2019,
https://doi.org/10.2217/nnm.15.18 Multifunctional Gelatin Tricalcium Phosphate Porous
143. Jia W, Gungor-Ozkerim PS, Yu SZ, et al., 2016, Direct 3D Nanocomposite Scaffolds for Tissue Engineering and Local
Bioprinting of Perfusable Vascular Constructs Using a Blend Drug Delivery: In Vitro and In Vivo Studies. J Taiwan Inst
Bioink. Biomaterials, 106:58–68. Chem Eng, 101:214–20.
https://doi.org/10.1016/j.biomaterials.2016.07.038 https://doi.org/10.1016/j. jtice.2019.04.028
144. Suntornnond R, Tan E, An J, et al., 2017, A Highly Printable 154. Cheng L, Wang C, Feng L, et al., 2014, Functional
and Biocompatible Hydrogel Composite for Direct Printing Nanomaterials for Phototherapies of Cancer. Chin J Clin
of Soft and Perfusable Vasculature-like Structures. Sci Rep, Oncol, 114:10869–939.
7:16902. https://doi.org/10.1021/cr400532z
https://doi.org/10.1038/s41598-017-17198-0 155. Ma H, Jiang C, Dong Z, et al., 2016, A Bifunctional
145. Zhang Y, Yu Y, Chen H, et al., 2013, Characterization Biomaterial with Photothermal Effect forTumor Therapy and
of Printable Cellular Micro-fluidic Channels for Tissue Bone Regeneration. Adv Funct Mater, 26:1197–208.
Engineering. Biofabrication, 5:025004. https://doi.org/10.1021/cr400532z
https://doi.org/10.1088/1758-5082/5/2/025004 156. Qu Y, Chu BY, Peng JR, et al., 2015, A Biodegradable Thermo-
146. Isakoff MS, Bielack SS, Meltzer P, et al., 2015, Osteosarcoma: responsive Hybrid Hydrogel: Therapeutic Applications in
Current Treatment and a Collaborative Pathway to Success. Preventing the Post-operative Recurrence of Breast Cancer.
J Clin Oncol, 33:3029–35. Npg Asia Mater, 7:e207.
https://doi.org/10.1200/JCO.2014.59.4895 https://doi.org/10.1038/am.2015.83
147. Italiano A, Mir O, Cioffi A, et al., 2013, Advanced 157. Wang X, Li T, Ma H, et al., 2017, A 3D-printed Scaffold
Chondrosarcomas: Role of Chemotherapy and Survival. Ann with MoS2 Nanosheets for Tumor Therapy and Tissue
Oncol, 24:2916–22. Regeneration. Npg Asia Mater, 9:e376.
https://doi.org/10.1093/annonc/mdt374 https://doi.org/10.1038/am.2017.47
148. Gaspar N, Hawkins DS, Dirksen U, et al., 2016, Ewing 158. Liu HH, Lin ML, Liu X, et al., 2020, Doping Bioactive
Sarcoma: Current Management and Future Approaches Elements into a Collagen Scaffold Based on Synchronous
Through Collaboration. J Clin Oncol, 33:3036–46. Self-assembly/Mineralization for Bone Tissue Engineering.
https://doi.org/10.1200/JCO.2014.59.5256 Bioactive Mater, 5:844–58.
149. Smeland S, Bielack SS, Whelan J, et al., 2019, Survival https://doi.org/10.1016/j. bioactmat.2020.06.005
and Prognosis with Osteosarcoma: Outcomes in more than 159. Wang XC, Xue JM, Ma B, et al., 2020, Black Bioceramics:
International Journal of Bioprinting (2021)–Volume 7, Issue 4 63

