Page 122 - IJB-8-1
P. 122
Antibacterial Performance of Graphene Oxide-loaded Nickel
https://doi.org/10.1021/acsami.6b07510 16:113–23.
24. Liu Y, Wen J, Gao Y, et al., 2018, Antibacterial Graphene https://doi.org/10.1080/17452759.2020.1823116
Oxide Coatings on Polymer Substrate. Appl Surf Sci, 35. Ning F, Cong W, Hu Y, et al., 2017, Additive Manufacturing
436:624–30. of Carbon Fiber-reinforced Plastic Composites Using Fused
https://doi.org/10.1016/j.apsusc.2017.12.006 Deposition Modeling: Effects of Process Parameters on
25. Zhao Z, Meng F, Tang J, et al., 2019, A Novel Method of Tensile Properties. J Compos Mater, 51:451–62.
Fabricating an Antibacterial Aluminum-matrix Composite https://doi.org/10.1177/0021998316646169
Coating Doped Graphene/Silver-nanoparticles. Mater Lett, 36. Alemohammad H, Toyserkani E, 2010, Laser-assisted
245:211–4. Additive Fabrication of Micro-sized Coatings. Adv Laser
https://doi.org/10.1016/j.matlet.2019.02.121 Mater Process, 2010:735–62.
26. Goh GL, Zhang H, Chong TH, et al., 2021, 3D Printing of 37. Hirt L, Ihle S, Pan Z, et al., 2016, Template-Free 3D
Multilayered and Multimaterial Electronics: A Review. Adv Microprinting of Metals Using a Force-Controlled
Electron Mater, 2021:2100445. Nanopipette for Layer-by-Layer Electrodeposition. Adv
https://doi.org/10.1002/aelm.202100445 Mater, 28:2311–5.
27. Mahmood MA, Banica A, Ristoscu C, et al., 2021, Laser https://doi.org/10.1002/adma.201504967
Coatings via State-of-the-Art Additive Manufacturing: 38. Jiang W, Shen L, Qiu M, et al., 2018, Preparation of Ni-
A Review. Coatings, 11:296. SiC composite coatings by magnetic field-enhanced jet
https://doi.org/10.3390/coatings11030296 electrodeposition. J Alloys Compd, 762:115–24.
28. Saengchairat N, Tran T, Chua CK, 2017, A Review: Additive https://doi.org/10.1016/j.jallcom.2018.05.097
Manufacturing for Active Electronic Components. Virtual 39. Qiao GY, Jing TF, Wang N, et al., 2005, High-speed Jet
Phys Prototype, 12:31–46. Electrodeposition and Microstructure of Nanocrystalline Ni-
https://doi.org/10.1080/17452759.2016.1253181 Co Alloys. Electrochim Acta, 51:85–92.
29. Shuai CJ, Yang ML, Deng F, et al., 2020, Forming Quality, https://doi.org/10.1016/j.electacta.2005.03.050
Mechanical Properties, and Anti-inflammatory Activity of 40. Shen L, Xu M, Jiang W, et al., 2019, A Novel
Additive Manufactured Zn-Nd Alloy. J Zhejiang Univ A, Superhydrophobic Ni/Nip Coating Fabricated by Magnetic
21:876–91. Field Induced Selective Scanning Electrodeposition. Appl
https://doi.org/10.1631/jzus.A2000186 Surf Sci, 489:25–33.
30. Veres J, Bringans RD, Chow EM, et al., 2016, Additive https://doi.org/10.1016/j.apsusc.2019.05.335
Manufacturing for Electronics “Beyond Moore”. San 41. Xu M, Shen L, Jiang W, et al., 2019, Fabrication of Ni-
Francisco, CA, USA: Proceedings of 2016 IEEE International SiC Superhydrophilic Surface by Magnetic Field-assisted
Electron Devices Meeting, p25-6. Scanning Electrodeposition. J Alloys Compd, 799:224–30.
31. Choe YE, Kim GH, 2020, A PCL/Cellulose Coil-shaped https://doi.org/10.1016/j.jallcom.2019.05.339
Scaffoldviaa Modified Electrohydrodynamic Jetting Process. 42. Ji L, Chen F, Huang H, et al., 2018, Preparation of Nickel-
Virtual Phys Prototype, 15:403–16. Graphene Composites by Jet Electrodeposition and
https://doi.org/10.1080/17452759.2020.1808269 the Influence of Graphene Oxide Concentration on the
32. Goh GL, Agarwala S, Yeong WY, 2018, High Resolution Morphologies and Properties. Surf Coat Technol, 351:212–9.
Aerosol Jet Printing of Conductive Ink for Stretchable https://doi.org/10.1016/j.surfcoat.2018.07.083
Electronics. Proceedings of the 3 International Conference 43. Arghavanian R, Bostani B, Parvini-Ahmadi N, et al., 2014,
rd
on Progress in Additive Manufacturing, p109–14. Field-enhanced Co-electrodeposition of Zirconia Particles
33. Goh GL, Tay MF, Lee JM, et al., 2021, Potential of Printed with a Magnetic Shell During Ni Electrodeposition. Surf
Electrodes for Electrochemical Impedance Spectroscopy Coat Technol, 258:1171–5.
(EIS): Toward Membrane Fouling Detection. Adv Electron https://doi.org/10.1016/j.surfcoat.2014.07.015
Mater, 2021:2100043. 44. Jena G, Anandkumar B, Sofia S, et al., 2020, Fabrication of
https://doi.org/10.1002/aelm.202100043 Silanized GO Hybrid Coating on 316L SS with Enhanced
34. Wang Z, Zhang G, Huang H, et al., 2021, The Self-induced Corrosion Resistance and Antibacterial Properties for Marine
Electric-field-driven Jet Printing for Fabricating Ultrafine Applications. Surf Coat Technol, 402:126295.
Silver Grid Transparent Electrode. Virtual Phys Prototy, https://doi.org/10.1016/j.surfcoat.2020.126295
108 International Journal of Bioprinting (2022)–Volume 8, Issue 1

