Page 121 - IJB-8-1
P. 121

Lou, et al.
               Technol, 43:573–83.                             13.  Baek  SH,  Roh  J,  Park  CY, et  al.,  2020,  Cu-nanoflower
               https://doi.org/10.1016/j.lwt.2009.12.008           Decorated Gold Nanoparticles-graphene Oxide Nanofiber as
           2.   Pistone A, Scolaro C, Visco A, 2021, Mechanical Properties   Electrochemical Biosensor for Glucose Detection. Mater Sci
               of  Protective  Coatings  against  Marine  Fouling: A  Review.   Eng C Mater, 107:110273.
               Polymers (Basel), 13:173.                           https://doi.org/10.1016/j.msec.2019.110273
               https://doi.org/10.3390/polym13020173           14.  Singh V, Kumar V, Kashyap S, et al., 2019, Graphene Oxide
           3.   Angell  P,  Urbanic  K,  2000,  Sulphate-reducing  Bacterial   Synergistically Enhances Antibiotic Efficacy in Vancomycin-
               Activity  as a Parameter  to Predict Localized  Corrosion of   Resistant  Staphylococcus aureus.  ACS  Appl Bio Mater,
               Stainless Alloys. Corro Sci, 42:897–912.            2:1148–57.
               https://doi.org/10.1016/s0010-938x(99)00116-x       https://doi.org/10.1021/acsabm.8b00757
           4.   Veerachamy S, Yarlagadda T, Manivasagam G, et al., 2014,   15.  Kuila  T,  Mishra  AK,  Khanra  P, et al., 2013, Recent
               Bacterial  Adherence  and  Biofilm  Formation  on  Medical   Advances  in  the  Efficient  Reduction  of  Graphene  Oxide
               Implants: A Review. Proc Inst Mech Eng Part H, 228:1083–99.  and its Application as Energy Storage Electrode Materials.
               https://doi.org/10.1177/0954411914556137            Nanoscale, 5:52–71.
           5.   Cloutier  M,  Mantovani  D,  Rosei  F,  2015,  Antibacterial      https://doi.org/10.1039/c2nr32703a
               Coatings:  Challenges,  Perspectives,  and  Opportunities.   16.  Shih CJ, Lin S, Sharma R, et al., 2013, Understanding the pH-
               Trends Biotechnol, 33:637–52.                       dependent Behavior of Graphene Oxide Aqueous Solutions:
               https://doi.org/10.1016/j.tibtech.2015.09.002       A  Comparative  Experimental  and Molecular  Dynamics
           6.   Bandara  CD,  Singh  S, Afara  IO, et al.,  2017,  Bactericidal   Simulation Study. Langmuir, 28:235–41.
               Effects  of  Natural  Nanotopography  of  Dragonfly  Wing  on   17.  Hu  W,  Peng  C,  Luo  W,  et al.,  2010,  Graphene-Based
               Escherichia coli. ACS Appl Mater Interfaces, 9:6746–60.  Antibacterial Paper, ACS Nano 4:4317–23.
               https://doi.org/10.1021/acsami.6b13666              https://doi.org/10.1021/nn101097v.
           7.   Ivanova  EP,  Hasan  J,  Webb  HK, et  al.,  2012,  Natural   18.  Akhavan  O,  Ghaderi  E,  2010,  Toxicity  of  Graphene and
               Bactericidal Surfaces: Mechanical Rupture of Pseudomonas   Graphene  Oxide  Nanowalls  Against  Bacteria.  ACS  Nano,
               aeruginosa Cells by Cicada Wings. Small, 8:2489–94.  4:5731–6.
               https://doi.org/10.1002/smll.201200528              https://doi.org/10.1021/nn101390x
           8.   Kazemzadeh-Narbat  M,  Lai  BF,  Ding  C, et al., 2013,   19.  Ahmed F, Rodrigues DF, 2013, Investigation of Acute Effects
               Multilayered  Coating  on  Titanium for Controlled  Release   of  Graphene  Oxide  on  Wastewater  Microbial  Community:
               of  Antimicrobial  Peptides for the Prevention of Implant-  A Case Study. J Hazard Mater, 256:33–9.
               associated Infections. Biomaterials, 34:5969–77.     https://doi.org/10.1016/j.jhazmat.2013.03.064
               https://doi.org/10.1016/j.biomaterials.2013.04.036  20.  Carpio  IE,  Santos  CM,  Wei  X, et al., 2012,  Toxicity  of
           9.   Park S, Kim HH, Bin Yang S, et al., 2018, A Polysaccharide-  a Polymer-graphene  Oxide  Composite  Against  Bacterial
               Based Antibacterial  Coating  with  Improved  Durability  for   Planktonic Cells, Biofilms, and Mammalian Cells. Nanoscale,
               Clear  Overlay  Appliances.  ACS  Appl Mater Interfaces,   4:4746–56.
               10:17714–21.                                        https://doi.org/10.1039/c2nr30774j
               https://doi.org/10.1021/acsami.8b04433          21.  Zou X, Zhang L, Wang Z, et al., 2016, Mechanisms of the
           10.  Peng L, Chang L, Liu X, et al., 2017, Antibacterial Property   Antimicrobial Activities of Graphene Materials. J Am Chem
               of a Polyethylene Glycol-Grafted Dental Material. ACS Appl   Soc, 138:2064–77.
               Mater Interfaces, 9:17688–692.                      https://doi.org/10.1021/jacs.5b11411
               https://doi.org/10.1021/acsami.7b05284          22.  Tu  Y,  Lv  M,  Xiu  P, et al., 2013, Destructive  Extraction
           11.  Zhao Q, Liu C, Su X, et al., 2013, Antibacterial Characteristics   of Phospholipids from  Escherichia coli Membranes by
               of Electroless  Plating Ni-P-TiO   Coatings.  Appl Surf Sci,   Graphene Nanosheets. Nat Nanotechnol, 8:594–601.
                                       2
               274:101–4.                                          https://doi.org/10.1038/nnano.2013.125
               https://doi.org/10.1016/j.apsusc.2013.02.112    23.  Konwar A, Kalita S, Kotoky J, et al., 2016, Chitosan-Iron
           12.  Dreyer DR, Park S, Bielawski CW, et al., 2010, The Chemistry   Oxide  Coated  Graphene  Oxide  Nanocomposite  Hydrogel:
               of Graphene Oxide. Chem Soc Rev, 39:228–40.         A Robust and Soft Antimicrobial Biofilm. ACS Appl Mater
               https://doi.org/10.1039/b917103g                    Interfaces, 8:20625–34.

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 1       107
   116   117   118   119   120   121   122   123   124   125   126