Page 179 - IJB-8-1
P. 179

Aihemaiti, et al.
               https://doi.org/10.1016/j.compositesb.2021.109192     https://doi.org/10.1016/j.jmbbm.2008.06.001
           14.  Yang Y, Wang G, Liang H, et al., 2019, Additive Manufacturing   24.  Nejati E, Firouzdor V, Eslaminejad MB, et al., 2009, Needle-
               of Bone Scaffolds. Int J Bioprint, 5:148.           Like Nano Hydroxyapatite/Poly(L-Lactide Acid) Composite
               https://doi.org/10.18063/IJB.v5i1.148               Scaffold for Bone Tissue Engineering Application. Mater Sci
           15.  Rony L, Lancigu  R, Hubert  L, 2018, Intraosseous Metal   Eng C, 29:942–9.
               Implants in Orthopedics:  A  Review.  Morphologie,      https://doi.org/10.1016/j.msec.2008.07.038
               102:231–42.                                     25.  Gao  X, Qi  S, Kuang  X,  et  al.,  2021,  Fused Filament
               https://doi.org/10.1016/j.morpho.2018.09.003        Fabrication  of Polymer  Materials: A  Review of Interlayer
           16.  Gupta SK,  Shahidsha N,  Bahl S,  et al., 2021, Enhanced   Bond. Addit Manuf, 37:101658.
               Biomechanical  Performance  of  Additively  Manufactured      https://doi.org/10.1016/j.addma.2020.101658
               Ti-6Al-4V Bone Plates.  J  Mech Behav Biomed Mater,   26.  Mohan N, Senthil  P, Vinodh S, et al., 2017, A Review on
               119:104552.                                         Composite  Materials  and  Process Parameters  Optimisation
               https://doi.org/10.1016/j.jmbbm.2021.104552         for the Fused Deposition Modelling Process.  Virtual Phys
           17.  Jung GS, Kwon JH, Lee JW, et al., 2017, A New Approach to   Prototyp, 12:47–59.
               Nasomaxillary Complex Type of Nasal Bone Fracture: Clip      https://doi.org/10.1080/17452759.2016.1274490
               Operation. J Craniomaxillofac Surg, 45:954–61.  27.  Bardiya S, Jerald J, Satheeshkumar V, 2021, The Impact of
               https://doi.org/10.1016/j.jcms.2017.03.020          Process Parameters on the Tensile Strength, Flexural Strength
           18.  Ueki K, Moroi A, Yoshizawa K, et  al., 2017, Comparison   and the Manufacturing Time of Fused Filament Fabricated
               of Skeletal  Stability  after  Sagittal  Split  Ramus  Osteotomy   (FFF) Parts. Mater Today Proc, 39:1362–6.
               among Mono-Cortical  Plate  Fixation,  Bi-Cortical  Plate      https://doi.org/10.1016/j.matpr.2020.04.691
               Fixation, and Hybrid Fixation using Absorbable Plates and   28.  Lepoivre A, Levy A, Boyard  N, et  al., 2021, Coalescence
               Screws. J Craniomaxillofac Surg, 45:178–82.         in Fused Filament Fabrication Process: Thermo-Dependent
               https://doi.org/10.1016/j.jcms.2016.11.007          Characterization  of High-Performance Polymer Properties.
           19.  Gong M, Zhao Q, Dai L, et al., 2018, Fabrication of Polylactic   Polym Test, 98:107096.
               Acid/Hydroxyapatite/Graphene Oxide Composite and their      https://doi.org/10.1016/j.polymertesting.2021.107096
               Thermal Stability, Hydrophobic and Mechanical Properties.   29.  Rao Y,  Wei  N, Yao  S, et al., 2021,  A Process-Structure-
               J Asian Ceram Soc, 5:160–8.                         Performance Modeling for Thermoplastic Polymers Via Material
               https://doi.org/10.1016/j.jascer.2017.04.001        Extrusion Additive Manufacturing. Addit Manuf, 39:101857.
           20.  Nikzad M, Masood SH, Sbarski I, 2011, Thermo-Mechanical      https://doi.org/10.1016/j.addma.2021.101857
               Properties of a Highly Filled Polymeric Composites for Fused   30.  Pei N, Hao Z, Wang S, et al., 2021, 3D Printing of Layered
               Deposition Modeling. Mater Des, 32:3448–56.         Gradient Pore Structure of Brain-like Tissue. Int J Bioprint,
               https://doi.org/10.1016/j.matdes.2011.01.056        7:359–9.
           21.  Huang G, Du Z,  Yuan Z, et  al., 2018, Poly(L-Lactide)      https://doi.org/10.18063/ijb.v7i3.359
               Nanocomposites Containing  Poly (D-Lactide)  Grafted   31.  Porter JH, Cain TM, Fox SL, et al., 2018, Influence of Infill
               Nanohydroxyapatite with Improved Interfacial Adhesion Via   Properties on Flexural  Rigidity  of 3D-Printed Structural
               Stereocomplexation. J Mech Behav Biomed Mater, 78:10–9.  Members. Virtual Phys Prototyp, 14:148–59.
               https://doi.org/10.1016/j.jmbbm.2017.10.036         https://doi.org/10.1080/17452759.2018.1537064
           22.  Shikinami Y, Matsusue Y, Nakamura T, 2005, The Complete   32.  Kerekes TW, Lim H, Joe WY, et al., 2019, Characterization
               Process of Bioresorption  and  Bone  Replacement  Using   of Process-Deformation/Damage  Property Relationship  of
               Devices Made of Forged Composites of Raw Hydroxyapatite   Fused Deposition Modeling (FDM) 3D-Printed Specimens.
               Particles/Poly  L-Lactide  (F-u-HA/PLLA).  Biomaterials,   Addit Manuf, 25:532–44.
               26:5542–51.                                         https://doi.org/10.1016/j.addma.2018.11.008
               https://doi.org/10.1016/j.biomaterials.2005.02.016  33.  Yao T, Zhang K, Deng Z, et al., 2020, A Novel Generalized
           23.  Takayama T, Todo M, Takano A, 2009, The Effect of Bimodal   Stress Invariant-Based Strength Model for Inter-Layer Failure
               Distribution on the Mechanical Properties of Hydroxyapatite   of FFF 3D Printing PLA Material. Mater Des, 193:108799.
               Particle Filled Poly (L-Lactide) Composites. J Mech Behav      https://doi.org/10.1016/j.matdes.2020.108799
               Biomed Mater, 2:105–12.                         34.  Popescu D, Zapciu A, Amza C, et al., 2018, FDM Process

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 1       165
   174   175   176   177   178   179   180   181   182   183   184