Page 179 - IJB-8-1
P. 179
Aihemaiti, et al.
https://doi.org/10.1016/j.compositesb.2021.109192 https://doi.org/10.1016/j.jmbbm.2008.06.001
14. Yang Y, Wang G, Liang H, et al., 2019, Additive Manufacturing 24. Nejati E, Firouzdor V, Eslaminejad MB, et al., 2009, Needle-
of Bone Scaffolds. Int J Bioprint, 5:148. Like Nano Hydroxyapatite/Poly(L-Lactide Acid) Composite
https://doi.org/10.18063/IJB.v5i1.148 Scaffold for Bone Tissue Engineering Application. Mater Sci
15. Rony L, Lancigu R, Hubert L, 2018, Intraosseous Metal Eng C, 29:942–9.
Implants in Orthopedics: A Review. Morphologie, https://doi.org/10.1016/j.msec.2008.07.038
102:231–42. 25. Gao X, Qi S, Kuang X, et al., 2021, Fused Filament
https://doi.org/10.1016/j.morpho.2018.09.003 Fabrication of Polymer Materials: A Review of Interlayer
16. Gupta SK, Shahidsha N, Bahl S, et al., 2021, Enhanced Bond. Addit Manuf, 37:101658.
Biomechanical Performance of Additively Manufactured https://doi.org/10.1016/j.addma.2020.101658
Ti-6Al-4V Bone Plates. J Mech Behav Biomed Mater, 26. Mohan N, Senthil P, Vinodh S, et al., 2017, A Review on
119:104552. Composite Materials and Process Parameters Optimisation
https://doi.org/10.1016/j.jmbbm.2021.104552 for the Fused Deposition Modelling Process. Virtual Phys
17. Jung GS, Kwon JH, Lee JW, et al., 2017, A New Approach to Prototyp, 12:47–59.
Nasomaxillary Complex Type of Nasal Bone Fracture: Clip https://doi.org/10.1080/17452759.2016.1274490
Operation. J Craniomaxillofac Surg, 45:954–61. 27. Bardiya S, Jerald J, Satheeshkumar V, 2021, The Impact of
https://doi.org/10.1016/j.jcms.2017.03.020 Process Parameters on the Tensile Strength, Flexural Strength
18. Ueki K, Moroi A, Yoshizawa K, et al., 2017, Comparison and the Manufacturing Time of Fused Filament Fabricated
of Skeletal Stability after Sagittal Split Ramus Osteotomy (FFF) Parts. Mater Today Proc, 39:1362–6.
among Mono-Cortical Plate Fixation, Bi-Cortical Plate https://doi.org/10.1016/j.matpr.2020.04.691
Fixation, and Hybrid Fixation using Absorbable Plates and 28. Lepoivre A, Levy A, Boyard N, et al., 2021, Coalescence
Screws. J Craniomaxillofac Surg, 45:178–82. in Fused Filament Fabrication Process: Thermo-Dependent
https://doi.org/10.1016/j.jcms.2016.11.007 Characterization of High-Performance Polymer Properties.
19. Gong M, Zhao Q, Dai L, et al., 2018, Fabrication of Polylactic Polym Test, 98:107096.
Acid/Hydroxyapatite/Graphene Oxide Composite and their https://doi.org/10.1016/j.polymertesting.2021.107096
Thermal Stability, Hydrophobic and Mechanical Properties. 29. Rao Y, Wei N, Yao S, et al., 2021, A Process-Structure-
J Asian Ceram Soc, 5:160–8. Performance Modeling for Thermoplastic Polymers Via Material
https://doi.org/10.1016/j.jascer.2017.04.001 Extrusion Additive Manufacturing. Addit Manuf, 39:101857.
20. Nikzad M, Masood SH, Sbarski I, 2011, Thermo-Mechanical https://doi.org/10.1016/j.addma.2021.101857
Properties of a Highly Filled Polymeric Composites for Fused 30. Pei N, Hao Z, Wang S, et al., 2021, 3D Printing of Layered
Deposition Modeling. Mater Des, 32:3448–56. Gradient Pore Structure of Brain-like Tissue. Int J Bioprint,
https://doi.org/10.1016/j.matdes.2011.01.056 7:359–9.
21. Huang G, Du Z, Yuan Z, et al., 2018, Poly(L-Lactide) https://doi.org/10.18063/ijb.v7i3.359
Nanocomposites Containing Poly (D-Lactide) Grafted 31. Porter JH, Cain TM, Fox SL, et al., 2018, Influence of Infill
Nanohydroxyapatite with Improved Interfacial Adhesion Via Properties on Flexural Rigidity of 3D-Printed Structural
Stereocomplexation. J Mech Behav Biomed Mater, 78:10–9. Members. Virtual Phys Prototyp, 14:148–59.
https://doi.org/10.1016/j.jmbbm.2017.10.036 https://doi.org/10.1080/17452759.2018.1537064
22. Shikinami Y, Matsusue Y, Nakamura T, 2005, The Complete 32. Kerekes TW, Lim H, Joe WY, et al., 2019, Characterization
Process of Bioresorption and Bone Replacement Using of Process-Deformation/Damage Property Relationship of
Devices Made of Forged Composites of Raw Hydroxyapatite Fused Deposition Modeling (FDM) 3D-Printed Specimens.
Particles/Poly L-Lactide (F-u-HA/PLLA). Biomaterials, Addit Manuf, 25:532–44.
26:5542–51. https://doi.org/10.1016/j.addma.2018.11.008
https://doi.org/10.1016/j.biomaterials.2005.02.016 33. Yao T, Zhang K, Deng Z, et al., 2020, A Novel Generalized
23. Takayama T, Todo M, Takano A, 2009, The Effect of Bimodal Stress Invariant-Based Strength Model for Inter-Layer Failure
Distribution on the Mechanical Properties of Hydroxyapatite of FFF 3D Printing PLA Material. Mater Des, 193:108799.
Particle Filled Poly (L-Lactide) Composites. J Mech Behav https://doi.org/10.1016/j.matdes.2020.108799
Biomed Mater, 2:105–12. 34. Popescu D, Zapciu A, Amza C, et al., 2018, FDM Process
International Journal of Bioprinting (2022)–Volume 8, Issue 1 165

