Page 19 - IJB-8-1
P. 19

Sing
           Acknowledgments                                         https://doi.org/10.1016/j.pmatsci.2015.03.002

           The author acknowledges the support from NTU        11.  Sercombe  TB, Li  X, 2016. Selective  laser  melting  of
           Presidential  Postdoctoral Fellowship from Nanyang      aluminium  and  aluminium  metal  matrix  composites:
           Technological University, Singapore.                    A review. Mater Technol 2016;31:77-85.
                                                                   https://doi.org/10.1179/1753555715y.0000000078
           Conflict of interest                                12.  Li Y, Yang C, Zhao H, et al., 2014. New Developments of
            The author declared no known conflict of interest.     Ti-based Alloys  for  Biomedical  Applications.  Materials,
                                                                   7:1709–800.
           References                                              https://doi.org/10.3390/ma7031709

           1.   Liu ZH, Zhang DQ, Chua CK, et al., 2013. Crystal Structure   13.  Niinomi M. Recent Metallic Materials  for Biomedical
               Analysis of M2 High Speed Steel Parts Produced by Selective   Applications. Metallurgical Mater Trans A, 2002;33:477.
               Laser Melting. Mater Characterization, 84:72–80.     https://doi.org/10.1007/s11661-002-0109-2
               https://doi.org/10.1016/j.matchar.2013.07.010   14.  Yang CL,  Zhang  ZJ, Li  SJ,  et  al.,  2018.  Simultaneous
           2.   Sing SL, Yeong WY, Wiria FE, et al., 2016. Characterization   Improvement  in Strength and Plasticity  of  Ti-24Nb-4Zr-
               of Titanium Lattice Structures Fabricated by Selective Laser   8Sn Manufactured by Selective Laser Melting. Mater Des,
               Melting Using an Adapted Compressive Test Method. Exp   157:52–9.
               Mech, 56:735–48.                                    https://doi.org/10.1016/j.matdes.2018.07.036
               https://doi.org/10.1007/s11340-015-0117-y       15.  Kuroda D, Niinomi M, Morinaga M, et al., 1998. Design and
           3.   Herzog D, Seyda  V,  Wycisk E,  et  al.,  2016. Additive   Mechanical Properties of New β Type Titanium Alloys for
               Manufacturing of Metals. Acta Mater, 117:371–92.    Implant Materials. Mater Sci Eng A, 243:244–9.
               https://doi.org/10.1016/j.actamat.2016.07.019       https://doi.org/10.1016/S0921-5093(97)00808-3
           4.   Sing SL, Yeong WY, Wiria FE, et al., 2017. Direct Selective   16.  Ummethala R, Karamched PS, Rathinavelu S, et al., 2020.
               Laser Sintering and Melting of Ceramics: A Review. Rapid   Selective Laser Melting of High-strength, Low-modulus Ti-
               Prototyp J, 23:611–23.                              35Nb-7Zr-5Ta alloy. Materialia, 14:100941.
               https://doi.org/10.1108/rpj-11-2015-0178            https://doi.org/10.1016/j.mtla.2020.100941
           5.   Yap CY, Chua CK, Dong ZL, et al., 2015. Review of Selective   17.  Yadroitsev I, Gusarov AV, Yadroitsava I, et al., 2010. Single
               Laser Melting: Materials and Applications. Appl Phys Rev,
               2:041101.                                           Track Formation  in Selective  Laser Melting of Metal
               https://doi.org/10.1063/1.4935926                   Powders. J Mater Proc Technol, 210:1624–31.
           6.   Bogue R, 2011. Nanocomposites: A Review of Technology      https://doi.org/10.1016/j.jmatprotec.2010.05.010
               and Applications. Assembly Autom, 31:106–12.    18.  Markl M, Körner C, 2016, Multiscale Modeling of Powder
           7.   Colombo-Pulgarin JC, Biffi CA, Vedani M, et al., 2021. Beta   Bed-Based Additive  Manufacturing.  Ann Rev Mater Res,
               Titanium Alloys  Processed  By  Laser  Powder Bed  Fusion:   46:93–123.
               A Review. J Mater Eng Perform, 30:6365–88.          https://doi.org/10.1146/annurev-matsci-070115-032158
               https://doi.org/10.1007/s11665-021-05800-6      19.  Aleixo  GT,  Afonso  C,  Coelho  A,  et  al.,  2008.  Effects  of
           8.   DebRoy  T,  Wei  HL, Zuback JS,  et  al.,  2018. Additive   Omega Phase on Elastic  Modulus of  Ti-Nb  Alloys as a
               Manufacturing of Metallic  Components Process,  Structure   Function of Composition and Cooling Rate.  Solid State
               and Properties. Prog Mater Sci, 92:112–224.         Phenomena, 138:393–8.
               https://doi.org/10.1016/j.pmatsci.2017.10.001       https://doi.org/10.4028/www.scientific.net/SSP.138.393
           9.   Gu DD,  Meiners  W,  Wissenbach K,  et al., 2013. Laser   20.  Mantri  SA, Nartu  MS, Dasari  S,  et  al., 2021. Suppression
               Additive Manufacturing of Metallic Components: Materials,   and Reactivation of  Transformation  and  Twinning
               Processes and Mechanisms. Int Mater Rev, 57:133–64.  Induced Plasticity in Laser Powder Bed Fusion Additively
               https://doi.org/10.1179/1743280411y.0000000014      Manufactured Ti-10V-2Fe-3Al. Addit Manuf, 48:102406.
           10.  Olakanmi EO, Cochrane RF, Dalgarno KW, 2015. A Review   21.  Sing SL, Huang S, Goh GD, et al., 2021. Emerging Metallic
               on Selective  Laser  Sintering/Melting  (SLS/SLM) of   Systems for Additive Manufacturing:  In-Situ Alloying  and
               Aluminium Alloy Powders: Processing, Microstructure, and   Multi-metal Processing in Laser Powder Bed Fusion. Prog
               Properties. Prog Mater Sci, 74:401–77.              Mater Sci, 119:100795.
                                       International Journal of Bioprinting (2022)–Volume 8, Issue 1         5
   14   15   16   17   18   19   20   21   22   23   24