Page 19 - IJB-8-1
P. 19
Sing
Acknowledgments https://doi.org/10.1016/j.pmatsci.2015.03.002
The author acknowledges the support from NTU 11. Sercombe TB, Li X, 2016. Selective laser melting of
Presidential Postdoctoral Fellowship from Nanyang aluminium and aluminium metal matrix composites:
Technological University, Singapore. A review. Mater Technol 2016;31:77-85.
https://doi.org/10.1179/1753555715y.0000000078
Conflict of interest 12. Li Y, Yang C, Zhao H, et al., 2014. New Developments of
The author declared no known conflict of interest. Ti-based Alloys for Biomedical Applications. Materials,
7:1709–800.
References https://doi.org/10.3390/ma7031709
1. Liu ZH, Zhang DQ, Chua CK, et al., 2013. Crystal Structure 13. Niinomi M. Recent Metallic Materials for Biomedical
Analysis of M2 High Speed Steel Parts Produced by Selective Applications. Metallurgical Mater Trans A, 2002;33:477.
Laser Melting. Mater Characterization, 84:72–80. https://doi.org/10.1007/s11661-002-0109-2
https://doi.org/10.1016/j.matchar.2013.07.010 14. Yang CL, Zhang ZJ, Li SJ, et al., 2018. Simultaneous
2. Sing SL, Yeong WY, Wiria FE, et al., 2016. Characterization Improvement in Strength and Plasticity of Ti-24Nb-4Zr-
of Titanium Lattice Structures Fabricated by Selective Laser 8Sn Manufactured by Selective Laser Melting. Mater Des,
Melting Using an Adapted Compressive Test Method. Exp 157:52–9.
Mech, 56:735–48. https://doi.org/10.1016/j.matdes.2018.07.036
https://doi.org/10.1007/s11340-015-0117-y 15. Kuroda D, Niinomi M, Morinaga M, et al., 1998. Design and
3. Herzog D, Seyda V, Wycisk E, et al., 2016. Additive Mechanical Properties of New β Type Titanium Alloys for
Manufacturing of Metals. Acta Mater, 117:371–92. Implant Materials. Mater Sci Eng A, 243:244–9.
https://doi.org/10.1016/j.actamat.2016.07.019 https://doi.org/10.1016/S0921-5093(97)00808-3
4. Sing SL, Yeong WY, Wiria FE, et al., 2017. Direct Selective 16. Ummethala R, Karamched PS, Rathinavelu S, et al., 2020.
Laser Sintering and Melting of Ceramics: A Review. Rapid Selective Laser Melting of High-strength, Low-modulus Ti-
Prototyp J, 23:611–23. 35Nb-7Zr-5Ta alloy. Materialia, 14:100941.
https://doi.org/10.1108/rpj-11-2015-0178 https://doi.org/10.1016/j.mtla.2020.100941
5. Yap CY, Chua CK, Dong ZL, et al., 2015. Review of Selective 17. Yadroitsev I, Gusarov AV, Yadroitsava I, et al., 2010. Single
Laser Melting: Materials and Applications. Appl Phys Rev,
2:041101. Track Formation in Selective Laser Melting of Metal
https://doi.org/10.1063/1.4935926 Powders. J Mater Proc Technol, 210:1624–31.
6. Bogue R, 2011. Nanocomposites: A Review of Technology https://doi.org/10.1016/j.jmatprotec.2010.05.010
and Applications. Assembly Autom, 31:106–12. 18. Markl M, Körner C, 2016, Multiscale Modeling of Powder
7. Colombo-Pulgarin JC, Biffi CA, Vedani M, et al., 2021. Beta Bed-Based Additive Manufacturing. Ann Rev Mater Res,
Titanium Alloys Processed By Laser Powder Bed Fusion: 46:93–123.
A Review. J Mater Eng Perform, 30:6365–88. https://doi.org/10.1146/annurev-matsci-070115-032158
https://doi.org/10.1007/s11665-021-05800-6 19. Aleixo GT, Afonso C, Coelho A, et al., 2008. Effects of
8. DebRoy T, Wei HL, Zuback JS, et al., 2018. Additive Omega Phase on Elastic Modulus of Ti-Nb Alloys as a
Manufacturing of Metallic Components Process, Structure Function of Composition and Cooling Rate. Solid State
and Properties. Prog Mater Sci, 92:112–224. Phenomena, 138:393–8.
https://doi.org/10.1016/j.pmatsci.2017.10.001 https://doi.org/10.4028/www.scientific.net/SSP.138.393
9. Gu DD, Meiners W, Wissenbach K, et al., 2013. Laser 20. Mantri SA, Nartu MS, Dasari S, et al., 2021. Suppression
Additive Manufacturing of Metallic Components: Materials, and Reactivation of Transformation and Twinning
Processes and Mechanisms. Int Mater Rev, 57:133–64. Induced Plasticity in Laser Powder Bed Fusion Additively
https://doi.org/10.1179/1743280411y.0000000014 Manufactured Ti-10V-2Fe-3Al. Addit Manuf, 48:102406.
10. Olakanmi EO, Cochrane RF, Dalgarno KW, 2015. A Review 21. Sing SL, Huang S, Goh GD, et al., 2021. Emerging Metallic
on Selective Laser Sintering/Melting (SLS/SLM) of Systems for Additive Manufacturing: In-Situ Alloying and
Aluminium Alloy Powders: Processing, Microstructure, and Multi-metal Processing in Laser Powder Bed Fusion. Prog
Properties. Prog Mater Sci, 74:401–77. Mater Sci, 119:100795.
International Journal of Bioprinting (2022)–Volume 8, Issue 1 5

