Page 22 - IJB-8-1
P. 22

Additive Manufactured Beta-Titanium Alloys
               https://doi.org/10.1016/j.eng.2019.04.012           of an  Adaptive, Self-learning Control Concept for an
           63.  Sing SL, Kuo CN, Shih CT,  et al., 2021. Perspectives  of   Additive  Manufacturing  Process.  CIRP  J  Manuf  Sci
               Using Machine  Learning  in  Laser  Powder Bed Fusion for   Technol, 19:57–61.
               Metal Additive  Manufacturing.  Virtual Phys Prototyp,      https://doi.org/10.1016/j.cirpj.2017.05.002
               2021;16:372–86.                                 66.  Baturynska I, Semeniuta O, Martinsen K, 2018. Optimization
               https://doi.org/10.1080/17452759.2021.1944229       of Process Parameters  for Powder Bed  Fusion  Additive
           64.  Rudolph JP, Emmelmann C, 2018. Self-learning Calculation   Manufacturing by Combination  of Machine Learning and
               for Selective Laser Melting. Proc CIRP, 67:185–90.  Finite  Element  Method:  A  Conceptual  Framework.  Proc
               https://doi.org/10.1016/j.procir.2017.12.197        CIRP, 67:227–32.
           65.  Renken V, Albinger S, Goch G, et al., 2017. Development      https://doi.org/10.1016/j.procir.2017.12.204


























































                                                               Publisher’s note
                                                               Whioce  Publishing remains neutral  with regard to
                                                               jurisdictional claims in published maps and institutional
                                                               affiliations.

           8                           International Journal of Bioprinting (2022)–Volume 8, Issue 1
   17   18   19   20   21   22   23   24   25   26   27