Page 21 - IJB-8-1
P. 21
Sing
42. Wang Q, Han C, Choma T, et al., 2017. Effect of Nb Content https://doi.org/10.1016/j.scriptamat.2018.05.010
on Microstructure, Property and In Vitro Apatite-forming 52. Li Y, Ding Y, Munir K, et al., 2019. Novel β-Ti35Zr28Nb
Capability of Ti-Nb Alloys Fabricated via Selective Laser Alloy Scaffolds Manufactured Using Selective Laser Melting
Melting. Mater Des, 126:268–77. for Bone Implant Applications. Acta Biomater, 87:273–84.
https://doi.org/10.1016/j.matdes.2017.04.026 https://doi.org/10.1016/j.actbio.2019.01.051
43. Zhao D, Han C, Li J, et al., 2020. In Situ Fabrication of a 53. Liu YJ, Zhang JS, Liu XC, et al., 2021. Non-layer-wise
Titanium-niobium Alloy with Tailored Microstructures, Fracture and Deformation Mechanism in Beta Titanium
Enhanced Mechanical Properties and Biocompatibility Cubic Lattice Structure Manufactured by Selective Laser
by Using Selective Laser Melting. Mater Sci Eng C, Melting. Mater Sci Eng A, 822:141696.
2020:110784. https://doi.org/10.1016/j.msea.2021.141696
https://doi.org/10.1016/j.msec.2020.110784 54. Qiu C, Liu Q, Ding R, 2021. Significant Enhancement in
44. Surmeneva MA, Koptyug A, Khrapov D, et al., 2020. In Situ Yield Strength for a Metastable Beta Titanium Alloy by
Synthesis of a Binary Ti-10at% Nb Alloy by Electron Beam Selective Laser Melting. Mater Sci Eng A, 816:141291.
Melting Using a Mixture of Elemental Niobium and Titanium https://doi.org/10.1016/j.msea.2021.141291
Powders. J Mater Proc Technol, 282:116646. 55. Liu YJ, Wang HL, Li SJ, et al., 2017. Compressive and Fatigue
https://doi.org/10.1016/j.jmatprotec.2020.116646 Behavior of Beta-type Titanium Porous Structures Fabricated
45. Mosallanejad MH, Niroumand B, Aversa A, et al., 2021. by Electron Beam Melting. Acta Mater, 126:58–66.
In-Situ Alloying in Laser-based Additive Manufacturing https://doi.org/10.1016/j.actamat.2016.12.052
Processes: A Critical Review. J Alloys Comp, 872:159567. 56. Goh GD, Sing SL, Yeong WY, 2020. A Review on Machine
https://doi.org/10.1016/j.jallcom.2021.159567 Learning in 3D Printing: Applications, Potential, and
46. Sing SL, Wiria FE, Yeong WY, 2018. Selective Laser Challenges. Artif Intell Rev, 54:63–94.
Melting of Lattice Structures: A Statistical Approach to https://doi.org/10.1007/s10462-020-09876-9
Manufacturability and Mechanical Behavior. Robot Comput 57. Özel T, Altay A, Kaftanoğlu B, et al., 2020. Focus Variation
Integr Manuf, 49:170–80. Measurement and Prediction of Surface Texture Parameters
https://doi.org/10.1016/j.rcim.2017.06.006 Using Machine Learning in Laser Powder Bed Fusion.
47. Sing SL, Wiria FE, Yeong WY, 2018. Selective Laser Melting J Manuf Sci Eng, 12:011008.
of Titanium Alloy with 50 wt% Tantalum: Effect of Laser https://doi.org/10.1115/1.4045415
Process Parameters on Part Quality. Int J Refract Metals Hard 58. Kwon O, Kim HG, Ham MJ, et al., 2020. A Deep Neural
Mater, 77:120–7. Network for Classification of Melt-pool Images in Metal
https://doi.org/10.1016/j.ijrmhm.2018.08.006 Additive Manufacturing. J Intell Manuf, 31:375–86.
48. Yang Y, Wang G, Liang H, et al., 2019. Additive Manufacturing https://doi.org/10.1007/s10845-018-1451-6
of Bone Scaffolds. Int J Bioprint, 5:148. 59. Kunkel MH, Gebhardt A, Mpofu K, et al., 2019. Quality
https://doi.org/10.18063/IJB.v5i1.148 Assurance in Metal Powder Bed Fusion Via Deep-learning-
49. Hafeez N, Liu J, Wang L, et al., 2020. Superelastic Response Based Image Classification. Rapid Prototyp J, 26:259–66.
of Low-modulus Porous Beta-type Ti-35Nb-2Ta-3Zr Alloy https://doi.org/10.1108/RPJ-03-2019-0066
Fabricated by Laser Powder Bed Fusion. Addit Manuf, 60. Shin DS, Lee CH, Kuhn U, et al., 2021. Optimizing Laser
34:101264. Powder Bed Fusion of Ti-5Al-5V-5Mo-3Cr by Artificial
https://doi.org/10.1016/j.addma.2020.101264 Intelligence. J Alloys Comp, 862:158018.
50. Liu YJ, Li SJ, Wang HL, et al., 2016. Microstructure, Defects https://doi.org/10.1016/j.jallcom.2020.158018
and Mechanical Behavior of Beta-type Titanium Porous 61. Meng L, McWilliams B, Jarosinski W, et al., 2020. Machine
Structures Manufactured by Electron Beam Melting and Learning in Additive Manufacturing: A Review. JOM,
Selective Laser Melting. Acta Mater, 113:56–67. 72:2363–77.
https://doi.org/10.1016/j.actamat.2016.04.029 https://doi.org/10.1007/s11837-020-04155-y
51. Liu YJ, Li SJ, Zhang LC, et al., 2018. Early Plastic 62. Qi X, Chen G, Li Y, et al., 2019. Applying Neural-Network-
Deformation Behaviour and Energy Absorption in Porous Based Machine Learning to Additive Manufacturing:
β-type Biomedical Titanium Produced by Selective Laser Current Applications, Challenges, and Future Perspectives.
Melting. Script Mater, 153:99–103. Engineering. 5:721–9.
International Journal of Bioprinting (2022)–Volume 8, Issue 1 7

