Page 20 - IJB-8-1
P. 20
Additive Manufactured Beta-Titanium Alloys
https://doi.org/10.1016/j.pmatsci.2021.100795 https://doi.org/10.1016/j.addma.2021.102376
22. Yu WH, Sing SL, Chua CK, et al., 2019. Particle-Reinforced 32. Schwab H, Prashanth K, Löber L, et al., 2015. Selective
Metal Matrix Nanocomposites Fabricated by Selective Laser Laser Melting of Ti-45Nb Alloy. Metals, 5:686–94.
Melting: A State of the Art Review. Prog Mater Sci, 104:330–79. https://doi.org/10.3390/met5020686
https://doi.org/10.1016/j.pmatsci.2019.04.006 33. Schulze C, Weinmann M, Schweigel C, et al., 2018.
23. Saedi S, Moghaddam NS, Amerinatanzi A, et al., 2018. On Mechanical Properties of a Newly Additive Manufactured
the Effects of Selective Laser Melting Process Parameters on Implant Material Based on Ti-42Nb. Materials, 11:124.
Microstructure and Thermomechanical Response of Ni-rich https://doi.org/10.3390/ma11010124
NiTi. Acta Mater, 144:552–60. 34. Macias-Sifuentes MA, Xu C, Sanchez-Mata O, et al., 2021.
https://doi.org/10.1016/j.actamat.2017.10.072 Microstructure and Mechanical Properties of β-21S Ti Alloy
24. Guzmán J, de Moura Nobre R, Nunes ER, et al., 2021. Laser Fabricated through Laser Powder Bed Fusion. Prog Addit
Powder Bed Fusion Parameters to Produce High-density Ti- Manuf, 6:417–30.
53%Nb Alloy Using Irregularly Shaped Powder from Hydride- https://doi.org/10.1007/s40964-021-00181-7
dehydride (HDH) Process. J Mater Res Technol, 10:1372–81. 35. Schwab H, Palm F, Kuhn U, et al., 2016. Microstructure
https://doi.org/10.1016/j.jmrt.2020.12.084 and Mechanical Properties of the Near-beta Titanium Alloy
25. Silvestri AT, Foglia S, Borrelli R, et al., 2020. Electron Beam Ti-5553 Processed by Selective Laser Melting. Mater Des,
Melting of Ti6Al4V: Role of the Process Parameters under 105:75–80.
the Same Energy Density. J Manuf Processes, 60:162–79. https://doi.org/10.1016/j.matdes.2016.04.103
https://doi.org/10.1016/j.jmapro.2020.10.065 36. Liu YJ, Zhang YS, Zhang LC, 2019. Transformation-
26. Pobel CR, Osmanlic F, Lodes MA, et al., 2019. Processing induced Plasticity and High Strength in Beta Titanium
Windows for Ti-6Al-4V Fabricated by Selective Electron
Beam Melting with Improved Beam Focus and Different Alloy Manufactured by Selective Laser Melting. Materialia,
Scan Line Spacings. Rapid Prototyp J, 25:665–71. 6:100299.
https://doi.org/10.1108/RPJ-04-2018-0084 https://doi.org/10.1016/j.mtla.2019.100299
27. Sabzi HE, 2019. Powder Bed Fusion Additive Layer 37. Zhang LC, Klemm D, Eckert J, et al., 2011. Manufacture
Manufacturing of Titanium Alloys. Mater Sci Technol, by Selective Laser Melting and Mechanical Behavior of a
35:875–90. Biomedical Ti-24Nb-4Zr-8Sn Alloy. Script Mater, 65:21–4.
https://doi.org/10.1080/02670836.2019.1602974 https://doi.org/10.1016/j.scriptamat.2011.03.024
28. Sun SH, Hagihara K, Ishimoto T, et al., 2021. Comparison 38. Surmeneva M, Grubova I, Glukhova N, et al., 2021. New
of Microstructure, Crystallographic Texture, and Mechanical Ti-35Nb-7Zr-5Ta Alloy Manufacturing by Electron Beam
Properties in Ti-15Mo-5Zr-3Al Alloys Fabricated Via Melting for Medical Application Followed by High Current
Electron and Laser Beam Powder Bed Fusion Technologies. Pulsed Electron Beam Treatment. Metals, 11:1066.
Addit Manuf, 47:102329.
https://doi.org/10.1016/j.addma.2021.102329 https://doi.org/10.3390/met11071066
29. Guzmán J, de Moura Nobre R, Rodrigues Júnior DL, et al., 39. Wang Q, Zhang W, Li S, et al., 2021. Material Characterisation
2021. Comparing Spherical and Irregularly Shaped Powders and Computational Thermal Modelling of Electron Beam
in Laser Powder Bed Fusion of Nb47Ti Alloy. J Mater Eng Powder Bed Fusion Additive Manufacturing of Ti2448
Perf, 30:6557–67. Titanium Alloy. Materials, 14:7359.
https://doi.org/10.1007/s11665-021-05916-9 https://doi.org/10.3390/ma14237359
30. De Moura Nobre R, Ank de Morais W, Vasques MT, et al., 40. Poozov I, Sufiiarov V, Popovich A, et al., 2018. Synthesis
2021. Role of Laser Powder Bed Fusion Process Parameters of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb Alloys from
in Crystallographic Texture of Additive Manufactured Nb- Elemental Powders Using Powder-bed Fusion Additive
48Ti Alloy. J Mater Res Technol, 14:484–95. Manufacturing. J Alloys Comp, 763:436–45.
https://doi.org/10.1016/j.jmrt.2021.06.054 https://doi.org/10.1016/j.jallcom.2018.05.325
31. Hafeez N, Wei D, Xie L, et al., 2021. Evolution of 41. Kang N, Lu Y, Lin X, et al., 2019. Microstructure and Tensile
Microstructural Complex Transitions in Low-modulus Properties of Ti-Mo Alloys Manufactured via Using Laser
β-type Ti-35Nb-2Ta-3Zr Alloy Manufactured by Laser Powder Bed Fusion. J Alloys Comp, 771:877–84.
Powder Bed Fusion. Addit Manuf, 48:102376. https://doi.org/10.3390/cryst11091064
6 International Journal of Bioprinting (2022)–Volume 8, Issue 1

