Page 20 - IJB-8-1
P. 20

Additive Manufactured Beta-Titanium Alloys
               https://doi.org/10.1016/j.pmatsci.2021.100795       https://doi.org/10.1016/j.addma.2021.102376
           22.  Yu WH, Sing SL, Chua CK, et al., 2019. Particle-Reinforced   32.  Schwab H, Prashanth K, Löber L,  et  al., 2015. Selective
               Metal  Matrix  Nanocomposites  Fabricated  by  Selective  Laser   Laser Melting of Ti-45Nb Alloy. Metals, 5:686–94.
               Melting: A State of the Art Review. Prog Mater Sci, 104:330–79.     https://doi.org/10.3390/met5020686
               https://doi.org/10.1016/j.pmatsci.2019.04.006   33.  Schulze  C,  Weinmann  M, Schweigel  C,  et  al., 2018.
           23.  Saedi S, Moghaddam NS, Amerinatanzi A, et al., 2018. On   Mechanical  Properties  of a Newly Additive  Manufactured
               the Effects of Selective Laser Melting Process Parameters on   Implant Material Based on Ti-42Nb. Materials, 11:124.
               Microstructure and Thermomechanical Response of Ni-rich      https://doi.org/10.3390/ma11010124
               NiTi. Acta Mater, 144:552–60.                   34.  Macias-Sifuentes MA, Xu C, Sanchez-Mata O, et al., 2021.
               https://doi.org/10.1016/j.actamat.2017.10.072       Microstructure and Mechanical Properties of β-21S Ti Alloy
           24.  Guzmán J, de Moura Nobre R, Nunes ER, et al., 2021. Laser   Fabricated  through Laser  Powder Bed  Fusion.  Prog Addit
               Powder Bed Fusion Parameters to Produce High-density Ti-  Manuf, 6:417–30.
               53%Nb Alloy Using Irregularly Shaped Powder from Hydride-     https://doi.org/10.1007/s40964-021-00181-7
               dehydride (HDH) Process. J Mater Res Technol, 10:1372–81.  35.  Schwab H, Palm F, Kuhn U,  et al., 2016. Microstructure
               https://doi.org/10.1016/j.jmrt.2020.12.084          and Mechanical Properties of the Near-beta Titanium Alloy
           25.  Silvestri AT, Foglia S, Borrelli R, et al., 2020. Electron Beam   Ti-5553 Processed by Selective Laser Melting. Mater Des,
               Melting of Ti6Al4V: Role of the Process Parameters under   105:75–80.
               the Same Energy Density. J Manuf Processes, 60:162–79.     https://doi.org/10.1016/j.matdes.2016.04.103
               https://doi.org/10.1016/j.jmapro.2020.10.065    36.  Liu  YJ, Zhang  YS, Zhang LC, 2019.  Transformation-
           26.  Pobel CR, Osmanlic F, Lodes MA, et al., 2019. Processing   induced  Plasticity and High Strength  in Beta  Titanium
               Windows for  Ti-6Al-4V Fabricated by Selective  Electron
               Beam  Melting  with  Improved  Beam  Focus  and  Different   Alloy Manufactured by Selective Laser Melting. Materialia,
               Scan Line Spacings. Rapid Prototyp J, 25:665–71.    6:100299.
               https://doi.org/10.1108/RPJ-04-2018-0084            https://doi.org/10.1016/j.mtla.2019.100299
           27.  Sabzi HE, 2019. Powder Bed Fusion  Additive Layer   37.  Zhang LC,  Klemm  D, Eckert J,  et  al., 2011. Manufacture
               Manufacturing  of  Titanium  Alloys.  Mater Sci Technol,   by Selective Laser Melting and Mechanical  Behavior of a
               35:875–90.                                          Biomedical Ti-24Nb-4Zr-8Sn Alloy. Script Mater, 65:21–4.
               https://doi.org/10.1080/02670836.2019.1602974       https://doi.org/10.1016/j.scriptamat.2011.03.024
           28.  Sun SH, Hagihara K, Ishimoto T, et al., 2021. Comparison   38.  Surmeneva  M, Grubova I, Glukhova N,  et al., 2021. New
               of Microstructure, Crystallographic Texture, and Mechanical   Ti-35Nb-7Zr-5Ta  Alloy  Manufacturing  by  Electron  Beam
               Properties  in  Ti-15Mo-5Zr-3Al  Alloys  Fabricated  Via   Melting for Medical Application Followed by High Current
               Electron and Laser Beam Powder Bed Fusion Technologies.   Pulsed Electron Beam Treatment. Metals, 11:1066.
               Addit Manuf, 47:102329.
               https://doi.org/10.1016/j.addma.2021.102329         https://doi.org/10.3390/met11071066
           29.  Guzmán J, de Moura Nobre R, Rodrigues Júnior DL, et al.,   39.  Wang Q, Zhang W, Li S, et al., 2021. Material Characterisation
               2021. Comparing Spherical and Irregularly Shaped Powders   and  Computational  Thermal  Modelling  of  Electron  Beam
               in Laser Powder Bed Fusion of Nb47Ti Alloy. J Mater Eng   Powder  Bed Fusion  Additive Manufacturing of  Ti2448
               Perf, 30:6557–67.                                   Titanium Alloy. Materials, 14:7359.
               https://doi.org/10.1007/s11665-021-05916-9          https://doi.org/10.3390/ma14237359
           30.  De Moura Nobre R, Ank de Morais W, Vasques MT, et al.,   40.  Poozov I, Sufiiarov V, Popovich A, et al., 2018. Synthesis
               2021. Role of Laser Powder Bed Fusion Process Parameters   of Ti-5Al, Ti-6Al-7Nb,  and Ti-22Al-25Nb  Alloys  from
               in  Crystallographic Texture  of Additive  Manufactured  Nb-  Elemental  Powders Using Powder-bed Fusion  Additive
               48Ti Alloy. J Mater Res Technol, 14:484–95.         Manufacturing. J Alloys Comp, 763:436–45.
               https://doi.org/10.1016/j.jmrt.2021.06.054          https://doi.org/10.1016/j.jallcom.2018.05.325
           31.  Hafeez  N,  Wei  D, Xie L,  et  al., 2021. Evolution  of   41.  Kang N, Lu Y, Lin X, et al., 2019. Microstructure and Tensile
               Microstructural  Complex  Transitions  in  Low-modulus   Properties  of Ti-Mo Alloys Manufactured  via Using Laser
               β-type  Ti-35Nb-2Ta-3Zr  Alloy Manufactured  by Laser   Powder Bed Fusion. J Alloys Comp, 771:877–84.
               Powder Bed Fusion. Addit Manuf, 48:102376.          https://doi.org/10.3390/cryst11091064


           6                           International Journal of Bioprinting (2022)–Volume 8, Issue 1
   15   16   17   18   19   20   21   22   23   24   25