Page 210 - IJB-8-1
P. 210
3D Printing of a Graphene-Modified Photopolymer Using SLA
35. Kugler S, Kowalczyk K, Spychaj T, 2015, Hybrid Carbon 45. Abenojar J, Del Real JC, Ballesteros Y, et al., 2018, Kinetics
Nanotubes/Graphene Modified Acrylic Coats. Progress Org of Curing Process in Carbon/Epoxy Nano-Composites. IOP
Coat, 85:1–7. Conf Ser Mater Sci Eng, 369:012011.
https://doi.org/10.1016/j.porgcoat.2015.02.019 https://doi.org/10.1088/1757-899X/369/1/012011
36. Baig Z, Mamat O, Mustapha M, et al., 2018, Investigation 46. Liang H, Bu Y, Zhang Y, et al., 2015, Graphene Oxide as
of Tip Sonication Effects on Structural Quality of Graphene Efficient High-Concentration Formaldehyde Scavenger
Nanoplatelets (GNPs) for Superior Solvent Dispersion. and Reutilization in Supercapacitor. J Coll Interface Sci,
Ultrason Sonochem, 45:133–49. 444:109–14.
https://doi.org/10.1016/j.ultsonch.2018.03.007 https://doi.org/10.1016/j.jcis.2014.12.063
37. Lin D, Jin S, Zhang F, et al., 2015, 3D Stereolithography 47. Xia W, Xue H, Wang J, et al., 2016, Functionlized Graphene
Printing of Graphene Oxide Reinforced Complex Serving as Free Radical Scavenger and Corrosion Protection in
Architectures. Nanotechnology, 26:434003. Gamma-Irradiated Epoxy Composites. Carbon, 101:315–23.
https://doi.org/10.1088/0957-4484/26/43/434003 https://doi.org/10.1016/j.carbon.2016.02.004
38. Feng Z, Li Y, Hao L, et al., 2019, Graphene-Reinforced 48. Martin-Gallego M, Hernández M, Lorenzo V, et al., 2012,
Biodegradable Resin Composites for Stereolithographic 3D Cationic Photocured Epoxy Nanocomposites Filled with
Printing of Bone Structure Scaffolds. J Nanomater, 2019:1–13. Different Carbon Fillers. Polymer, 53:1831–8.
https://doi.org/10.1155/2019/9710264 https://doi.org/10.1016/j.polymer.2012.02.054
39. Manapat JZ, Mangadlao JD, Tiu BD, et al., 2017, High- 49. Paz E, Forriol F, del Real JC, et al., 2017, Graphene Oxide
Strength Stereolithographic 3D Printed Nanocomposites: Versus Graphene for Optimisation of PMMA Bone Cement
Graphene Oxide Metastability. ACS Appl Mater Interface, for Orthopaedic Applications. Mater Sci Eng C, 77:1003–11.
9:10085–93. https://doi.org/10.1016/j.msec.2017.03.269
https://doi.org/10.1021/acsami.6b16174 50. Courtecuisse F, Karasu F, Allonas X, et al., 2016,
40. Lipovka A, Rodriguez R, Bolbasov E, et al., 2020, Time- Confocal Raman Microscopy Study of Several Factors
Stable Wetting Effect of Plasma-Treated Biodegradable Known to Influence the Oxygen Inhibition of Acrylate
Scaffolds Functionalized with Graphene Oxide. Surf Coat Photopolymerization Under LED. Progress Org Coat, 92:1–7.
Technol, 388:125560. https://doi.org/10.1016/j.porgcoat.2015.11.020
https://doi.org/10.1016/j.surfcoat.2020.125560 51. Zhou ZX, Buchanan F, Lennon A, et al., 2014, Investigating
41. Lim SM, Shin BS, Kim K, 2017, Characterization of Products Approaches for Three-Dimensional Printing of
Using Additive Manufacturing with Graphene/Photopolymer- Hydroxyapatite Scaffolds for Bone Regeneration. Key Eng
Resin Nano-Fluid. J Nanosci Nanotechnol, 17:5492–55. Mater, 631:306–11.
https://doi.org/10.1166/jnn.2017.14159 https://doi.org/10.4028/www.scientific.net/kem.631.306
42. Moriche R, Artigas J, Reigosa L, et al., 2019, Modifications 52. Hakvoort G, van Reijen L, 1985, Measurement of the Thermal
Induced in Photocuring of Bis-GMA/TEGDMA by the Conductivity of Solid Substances by DSC. Thermochim Acta,
Addition of Graphene Nanoplatelets for 3D Printable 93:317–20.
Electrically Conductive Nanocomposites. Compos Sci 53. Sousa I, Mendes A, Pereira RF, et al., 2014, Collagen Surface
Technol, 184:107876. Modified Poly (ε-Caprolactone) Scaffolds with Improved
https://doi.org/10.1016/j.compscitech.2019.107876 Hydrophilicity and Cell Adhesion Properties. Mater Lett,
43. Weng Z, Zhou Y, Lin W, et al., 2016, Structure-Property 134:263–7.
Relationship of Nano Enhanced Stereolithography Resin for https://doi.org/10.1016/j.matlet.2014.06.132
Desktop SLA 3D Printer. Compos A Appl Sci Manuf, 88:234– 54. Merkel TC, Freeman BD, Spontak RJ, et al., 2002,
42. Ultrapermeable, Reverse-Selective Nanocomposite
https://doi.org/10.1016/j.compositesa.2016.05.035 Membranes. Science, 296:519–22.
44. Paz E, Ballesteros Y, Abenojar J, et al., 2019, Graphene Oxide https://doi.org/10.1126/science.1069580
and Graphene Reinforced PMMA Bone Cements: Evaluation 55. Vicard C, de Almeida O, Cantarel A, et al., 2017,
of Thermal Properties and Biocompatibility. Materials, Experimental Study of Polymerization and Crystallization
12:3146. Kinetics of Polyamide 6 Obtained by Anionic Ring Opening
https://doi.org/10.3390/ma12193146. Polymerization of ε-Caprolactam. Polymer, 132:88–97.
196 International Journal of Bioprinting (2022)–Volume 8, Issue 1

