Page 210 - IJB-8-1
P. 210

3D Printing of a Graphene-Modified Photopolymer Using SLA
           35.  Kugler  S,  Kowalczyk  K,  Spychaj T,  2015,  Hybrid  Carbon   45.  Abenojar J, Del Real JC, Ballesteros Y, et al., 2018, Kinetics
               Nanotubes/Graphene Modified Acrylic Coats. Progress Org   of Curing Process in Carbon/Epoxy Nano-Composites. IOP
               Coat, 85:1–7.                                       Conf Ser Mater Sci Eng, 369:012011.
               https://doi.org/10.1016/j.porgcoat.2015.02.019      https://doi.org/10.1088/1757-899X/369/1/012011
           36.  Baig Z, Mamat O, Mustapha M, et al., 2018, Investigation   46.  Liang H, Bu Y, Zhang Y, et al., 2015, Graphene Oxide as
               of Tip Sonication Effects on Structural Quality of Graphene   Efficient  High-Concentration  Formaldehyde  Scavenger
               Nanoplatelets  (GNPs)  for  Superior  Solvent  Dispersion.   and  Reutilization  in  Supercapacitor.  J  Coll  Interface  Sci,
               Ultrason Sonochem, 45:133–49.                       444:109–14.
               https://doi.org/10.1016/j.ultsonch.2018.03.007      https://doi.org/10.1016/j.jcis.2014.12.063
           37.  Lin  D,  Jin  S,  Zhang  F,  et al.,  2015,  3D  Stereolithography   47.  Xia W, Xue H, Wang J, et al., 2016, Functionlized Graphene
               Printing  of  Graphene  Oxide  Reinforced  Complex   Serving as Free Radical Scavenger and Corrosion Protection in
               Architectures. Nanotechnology, 26:434003.           Gamma-Irradiated Epoxy Composites. Carbon, 101:315–23.
               https://doi.org/10.1088/0957-4484/26/43/434003      https://doi.org/10.1016/j.carbon.2016.02.004
           38.  Feng  Z,  Li  Y,  Hao  L,  et  al.,  2019,  Graphene-Reinforced   48.  Martin-Gallego M, Hernández M, Lorenzo V, et al., 2012,
               Biodegradable  Resin  Composites  for  Stereolithographic  3D   Cationic  Photocured  Epoxy  Nanocomposites  Filled  with
               Printing of Bone Structure Scaffolds. J Nanomater, 2019:1–13.  Different Carbon Fillers. Polymer, 53:1831–8.
               https://doi.org/10.1155/2019/9710264                https://doi.org/10.1016/j.polymer.2012.02.054
           39.  Manapat  JZ,  Mangadlao  JD,  Tiu  BD,  et  al.,  2017,  High-  49.  Paz E, Forriol F, del Real JC, et al., 2017, Graphene Oxide
               Strength  Stereolithographic  3D  Printed  Nanocomposites:   Versus Graphene for Optimisation of PMMA Bone Cement
               Graphene  Oxide  Metastability.  ACS  Appl  Mater Interface,   for Orthopaedic Applications. Mater Sci Eng C, 77:1003–11.
               9:10085–93.                                         https://doi.org/10.1016/j.msec.2017.03.269
               https://doi.org/10.1021/acsami.6b16174          50.  Courtecuisse  F,  Karasu  F,  Allonas  X,  et al.,  2016,
           40.  Lipovka A,  Rodriguez  R,  Bolbasov  E,  et al.,  2020,  Time-  Confocal  Raman  Microscopy  Study  of  Several  Factors
               Stable  Wetting  Effect  of  Plasma-Treated  Biodegradable   Known  to  Influence  the  Oxygen  Inhibition  of  Acrylate
               Scaffolds  Functionalized  with  Graphene  Oxide.  Surf Coat   Photopolymerization Under LED. Progress Org Coat, 92:1–7.
               Technol, 388:125560.                                https://doi.org/10.1016/j.porgcoat.2015.11.020
               https://doi.org/10.1016/j.surfcoat.2020.125560  51.  Zhou ZX, Buchanan F, Lennon A, et al., 2014, Investigating
           41.  Lim SM, Shin BS, Kim K, 2017, Characterization of Products   Approaches   for   Three-Dimensional   Printing   of
               Using Additive Manufacturing with Graphene/Photopolymer-  Hydroxyapatite  Scaffolds  for  Bone  Regeneration.  Key Eng
               Resin Nano-Fluid. J Nanosci Nanotechnol, 17:5492–55.  Mater, 631:306–11.
               https://doi.org/10.1166/jnn.2017.14159              https://doi.org/10.4028/www.scientific.net/kem.631.306
           42.  Moriche R, Artigas J, Reigosa L, et al., 2019, Modifications   52.  Hakvoort G, van Reijen L, 1985, Measurement of the Thermal
               Induced  in  Photocuring  of  Bis-GMA/TEGDMA  by  the   Conductivity of Solid Substances by DSC. Thermochim Acta,
               Addition  of  Graphene  Nanoplatelets  for  3D  Printable   93:317–20.
               Electrically  Conductive  Nanocomposites.  Compos Sci   53.  Sousa I, Mendes A, Pereira RF, et al., 2014, Collagen Surface
               Technol, 184:107876.                                Modified  Poly  (ε-Caprolactone)  Scaffolds  with  Improved
               https://doi.org/10.1016/j.compscitech.2019.107876   Hydrophilicity  and  Cell  Adhesion  Properties.  Mater Lett,
           43.  Weng  Z,  Zhou  Y,  Lin  W,  et al.,  2016,  Structure-Property   134:263–7.
               Relationship of Nano Enhanced Stereolithography Resin for      https://doi.org/10.1016/j.matlet.2014.06.132
               Desktop SLA 3D Printer. Compos A Appl Sci Manuf, 88:234–  54.  Merkel  TC,  Freeman  BD,  Spontak  RJ,  et al.,  2002,
               42.                                                 Ultrapermeable,   Reverse-Selective   Nanocomposite
               https://doi.org/10.1016/j.compositesa.2016.05.035   Membranes. Science, 296:519–22.
           44.  Paz E, Ballesteros Y, Abenojar J, et al., 2019, Graphene Oxide      https://doi.org/10.1126/science.1069580
               and Graphene Reinforced PMMA Bone Cements: Evaluation   55.  Vicard  C,  de  Almeida  O,  Cantarel  A,  et al.,  2017,
               of  Thermal  Properties  and  Biocompatibility.  Materials,   Experimental  Study  of  Polymerization  and  Crystallization
               12:3146.                                            Kinetics of Polyamide 6 Obtained by Anionic Ring Opening
               https://doi.org/10.3390/ma12193146.                 Polymerization of ε-Caprolactam. Polymer, 132:88–97.

           196                         International Journal of Bioprinting (2022)–Volume 8, Issue 1
   205   206   207   208   209   210   211   212   213   214   215