Page 131 - IJB-8-3
P. 131

Zheng, et al.
               SiC Composites Prepared by Selective Laser Melting. J Adv   Zn Implants. Compos Part B Eng, 216:108882.
               Res, 38:143–55.                                     https://doi.org/10.1016/j.compositesb.2021.108882
               https://doi.org/10.1016/j.jare.2021.09.014      28.  Yang Y,  Lu  C,  Shen  L, et al.,  2021,  In-Situ  Deposition  of
           19.  Feng  P,  Kong  Y,  Liu  M, et al.,  2021,  Dispersion   Apatite Layer to Protect Mg-Based Composite Fabricated Via
               Strategies for Low-Dimensional Nanomaterials and Their   Laser Additive Manufacturing. J Magn Alloys, in press.
               Application  in  Biopolymer  Implants.  100127.  Mater      https://doi.org/10.1016/j.jma.2021.04.009
               Today, 2021:100127.                             29.  Qian G, Zhang L, Wang G, et al., 2021, 3D Printed Zn-doped
               https://doi.org/10.1016/j.mtnano.2021.100127        Mesoporous Silica-incorporated Poly-L-lactic Acid Scaffolds
           20.  Shuai  C,  Guo  W,  Wu  P, et  al.,  2018, A  Graphene  Oxide-  for Bone Repair. Int J Bioprint, 7:346.
               Ag  Co-Dispersing  Nanosystem:  Dual  Synergistic  Effects      https://doi.org/10.18063/ijb.v7i2.346
               on  Antibacterial  Activities  and Mechanical  Properties of   30.  Feng P, Wu P, Gao C, et al., 2018, A Multimaterial Scaffold
               Polymer Scaffolds. Chem Eng J, 347:322–33.          with Tunable Properties: Toward Bone Tissue Repair. Adv Sci
               https://doi.org/10.1016/j.cej.2018.04.092           (Weinh), 5:1700817.
           21.  Yang M, Shuai Y, Yang Y, et al., 2022, In situ Grown Rare      https://doi.org/10.1002/advs.201700817
               Earth  Lanthanum  on  Carbon  Nanofibre  for  Interfacial   31.  Qi F, Liao R, Shuai Y, et al., 2022, A Conductive Network
               Reinforcement  in Zn Implants.  Virtual Phys Prototyp,   Enhances Nerve Cell Response. Addit Manuf, 52:102694.
               2022:1-18.                                          https://doi.org/10.1016/j.addma.2022.102694
               https://doi.org/10.1080/17452759.2022.2053929   32.  Qi F, Gao X, Shuai Y, et al., 2022, Magnetic-Driven Wireless
           22.  Ali  I,  Hussain  R,  Louis  H, et al.,  2021,  In situ Reduced   Electrical  Stimulation  in  a  Scaffold.  Compos  Part  B Eng,
               Graphene-Based   Aerogels   Embedded   with   Gold   237:109864.
               Nanoparticles  for  Real-Time  Humidity  Sensing And  Toxic      https://doi.org/10.1016/j.compositesb.2022.109864
               Dyes Elimination. Mikrochim Acta, 188:10.       33.  Wang H, Zeng X, Pang L, et al., 2020, Integrative Treatment
               https://doi.org/10.1007/s00604-020-04658-0          of  Anti-Tumor/Bone  Repair  by Combination  of MoS2
           23.  Xu  P,  Liang  J,  Cao  X, et al.,  2016,  Facile  Synthesis  of   Nanosheets  with  3D  Printed  Bioactive  Borosilicate  Glass
               Monodisperse  of  Hollow  Mesoporous  SiO  Nanoparticles   Scaffolds. Nanoscale, 396:125081.
                                               2
               and  In-Situ  Growth  of Ag  Nanoparticles  for Antibacterial.      https://doi.org/10.1016/j.cej.2020.125081
               J Colloid Interface Sci, 474:114–8.             34.  Zhang Z, Zhang J, Zhang B, et al., 2013, Mussel-Inspired
               https://doi.org/10.1016/j.jcis.2016.04.009          Functionalization  of  Graphene  for  Synthesizing  Ag-
           24.  Qi F, Zeng Z, Yao J, et al., 2021, Constructing Core-Shell   Polydopamine-Graphene  Nanosheets  as  Antibacterial
               Structured  BaTiO @  Carbon  Boosts  Piezoelectric  Activity   Materials. Nanoscale, 5:118–23.
                            3
               and Cell Response of Polymer Scaffolds. Mater Sci Eng C,      https://doi.org/10.1039/c2nr32092d
               126:112129.                                     35.  Yuwen L, Sun Y, Tan G, et al., 2018, MoS2@polydopamine-
               https://doi.org/10.1016/j.msec.2021.112129          Ag Nanosheets with Enhanced  Antibacterial  Activity for
           25.  Hu Y, Dan W, Xiong S, et al., 2017, Development of Collagen/  Effective Treatment of Staphylococcus aureus Biofilms and
               Polydopamine Complexed Matrix as Mechanically Enhanced   Wound Infection. Nanoscale, 10:16711–20.
               and Highly Biocompatible Semi-Natural Tissue Engineering      https://doi.org/10.1039/c8nr04111c
               Scaffold. Acta Biomater, 47:135–48.             36.  Xie  Y,  Yan  B,  Xu  H, et al.,  2014,  Highly  Regenerable
               https://doi.org/10.1016/j.actbio.2016.10.017        Mussel-Inspired  Fe(3)O(4)@polydopamine-  Ag  Core-
           26.  Chen T, Liu Z, Zhang K, et al., 2021, Mussel-Inspired Ag   Shell Microspheres as Catalyst and  Adsorbent for
               NPs  Immobilized  on  Melamine  Sponge  for  Reduction   Methylene Blue Removal.  ACS  Appl Mater Interfaces,
               of  4-Nitrophenol,  Antibacterial  Applications  and  Its   6:8845–52.
               Superhydrophobic Derivative for Oil-Water Separation. ACS      https://doi.org/10.1021/am501632f
               Appl Mater Interfaces, 13:50539–51.             37.  Shuai C, Xu Y, Feng P, et al., 2019, Antibacterial Polymer
               https://doi.org/10.1021/acsami.1c14544              Scaffold Based on Mesoporous Bioactive Glass Loaded with
           27.  Yang Y, Yang M, He C, et al., 2021, Rare Earth Improves   In Situ Grown Silver. Chem Eng J, 374:304–15.
               Strength and Creep Resistance of Additively Manufactured      https://doi.org/10.1016/j.cej.2019.03.273


                                       International Journal of Bioprinting (2022)–Volume 8, Issue 3       123


            Please cite this article as: Zheng L, Zhong Y, He T, et al., 2022, A Codispersed Nanosystem of Silver-anchored MoS  Enhances Antibacterial
                                                                                            2
            and Antitumor Properties of Selective Laser Sintered Scaffolds, Int J Bioprint, 8(3):0025. http://doi.org/10.18063/ijb.v8i3.0025
   126   127   128   129   130   131   132   133   134   135   136