Page 131 - IJB-8-3
P. 131
Zheng, et al.
SiC Composites Prepared by Selective Laser Melting. J Adv Zn Implants. Compos Part B Eng, 216:108882.
Res, 38:143–55. https://doi.org/10.1016/j.compositesb.2021.108882
https://doi.org/10.1016/j.jare.2021.09.014 28. Yang Y, Lu C, Shen L, et al., 2021, In-Situ Deposition of
19. Feng P, Kong Y, Liu M, et al., 2021, Dispersion Apatite Layer to Protect Mg-Based Composite Fabricated Via
Strategies for Low-Dimensional Nanomaterials and Their Laser Additive Manufacturing. J Magn Alloys, in press.
Application in Biopolymer Implants. 100127. Mater https://doi.org/10.1016/j.jma.2021.04.009
Today, 2021:100127. 29. Qian G, Zhang L, Wang G, et al., 2021, 3D Printed Zn-doped
https://doi.org/10.1016/j.mtnano.2021.100127 Mesoporous Silica-incorporated Poly-L-lactic Acid Scaffolds
20. Shuai C, Guo W, Wu P, et al., 2018, A Graphene Oxide- for Bone Repair. Int J Bioprint, 7:346.
Ag Co-Dispersing Nanosystem: Dual Synergistic Effects https://doi.org/10.18063/ijb.v7i2.346
on Antibacterial Activities and Mechanical Properties of 30. Feng P, Wu P, Gao C, et al., 2018, A Multimaterial Scaffold
Polymer Scaffolds. Chem Eng J, 347:322–33. with Tunable Properties: Toward Bone Tissue Repair. Adv Sci
https://doi.org/10.1016/j.cej.2018.04.092 (Weinh), 5:1700817.
21. Yang M, Shuai Y, Yang Y, et al., 2022, In situ Grown Rare https://doi.org/10.1002/advs.201700817
Earth Lanthanum on Carbon Nanofibre for Interfacial 31. Qi F, Liao R, Shuai Y, et al., 2022, A Conductive Network
Reinforcement in Zn Implants. Virtual Phys Prototyp, Enhances Nerve Cell Response. Addit Manuf, 52:102694.
2022:1-18. https://doi.org/10.1016/j.addma.2022.102694
https://doi.org/10.1080/17452759.2022.2053929 32. Qi F, Gao X, Shuai Y, et al., 2022, Magnetic-Driven Wireless
22. Ali I, Hussain R, Louis H, et al., 2021, In situ Reduced Electrical Stimulation in a Scaffold. Compos Part B Eng,
Graphene-Based Aerogels Embedded with Gold 237:109864.
Nanoparticles for Real-Time Humidity Sensing And Toxic https://doi.org/10.1016/j.compositesb.2022.109864
Dyes Elimination. Mikrochim Acta, 188:10. 33. Wang H, Zeng X, Pang L, et al., 2020, Integrative Treatment
https://doi.org/10.1007/s00604-020-04658-0 of Anti-Tumor/Bone Repair by Combination of MoS2
23. Xu P, Liang J, Cao X, et al., 2016, Facile Synthesis of Nanosheets with 3D Printed Bioactive Borosilicate Glass
Monodisperse of Hollow Mesoporous SiO Nanoparticles Scaffolds. Nanoscale, 396:125081.
2
and In-Situ Growth of Ag Nanoparticles for Antibacterial. https://doi.org/10.1016/j.cej.2020.125081
J Colloid Interface Sci, 474:114–8. 34. Zhang Z, Zhang J, Zhang B, et al., 2013, Mussel-Inspired
https://doi.org/10.1016/j.jcis.2016.04.009 Functionalization of Graphene for Synthesizing Ag-
24. Qi F, Zeng Z, Yao J, et al., 2021, Constructing Core-Shell Polydopamine-Graphene Nanosheets as Antibacterial
Structured BaTiO @ Carbon Boosts Piezoelectric Activity Materials. Nanoscale, 5:118–23.
3
and Cell Response of Polymer Scaffolds. Mater Sci Eng C, https://doi.org/10.1039/c2nr32092d
126:112129. 35. Yuwen L, Sun Y, Tan G, et al., 2018, MoS2@polydopamine-
https://doi.org/10.1016/j.msec.2021.112129 Ag Nanosheets with Enhanced Antibacterial Activity for
25. Hu Y, Dan W, Xiong S, et al., 2017, Development of Collagen/ Effective Treatment of Staphylococcus aureus Biofilms and
Polydopamine Complexed Matrix as Mechanically Enhanced Wound Infection. Nanoscale, 10:16711–20.
and Highly Biocompatible Semi-Natural Tissue Engineering https://doi.org/10.1039/c8nr04111c
Scaffold. Acta Biomater, 47:135–48. 36. Xie Y, Yan B, Xu H, et al., 2014, Highly Regenerable
https://doi.org/10.1016/j.actbio.2016.10.017 Mussel-Inspired Fe(3)O(4)@polydopamine- Ag Core-
26. Chen T, Liu Z, Zhang K, et al., 2021, Mussel-Inspired Ag Shell Microspheres as Catalyst and Adsorbent for
NPs Immobilized on Melamine Sponge for Reduction Methylene Blue Removal. ACS Appl Mater Interfaces,
of 4-Nitrophenol, Antibacterial Applications and Its 6:8845–52.
Superhydrophobic Derivative for Oil-Water Separation. ACS https://doi.org/10.1021/am501632f
Appl Mater Interfaces, 13:50539–51. 37. Shuai C, Xu Y, Feng P, et al., 2019, Antibacterial Polymer
https://doi.org/10.1021/acsami.1c14544 Scaffold Based on Mesoporous Bioactive Glass Loaded with
27. Yang Y, Yang M, He C, et al., 2021, Rare Earth Improves In Situ Grown Silver. Chem Eng J, 374:304–15.
Strength and Creep Resistance of Additively Manufactured https://doi.org/10.1016/j.cej.2019.03.273
International Journal of Bioprinting (2022)–Volume 8, Issue 3 123
Please cite this article as: Zheng L, Zhong Y, He T, et al., 2022, A Codispersed Nanosystem of Silver-anchored MoS Enhances Antibacterial
2
and Antitumor Properties of Selective Laser Sintered Scaffolds, Int J Bioprint, 8(3):0025. http://doi.org/10.18063/ijb.v8i3.0025

