Page 156 - IJB-8-3
P. 156

3D-bioprinted HERS-DPCs for Alveolar Bone Regeneration
           Develop Program, West China Hospital of Stomatology,      https://doi.org/10.1016/B978-0-323-07846-7.00005-7
           Sichuan University (RD-03-202106).                  9.   Nanci  A,  editor, 2013, Periodontium. In:  Ten Cate’s  Oral
           Conflict of interest                                    Histology: Development, Structure, and Function. St. Louis,
                                                                   Missouri: Elsevier, Mosby. p207.
           The authors declare no conflicts of interest.           https://doi.org/10.1016/B978-0-323-07846-7.00009-4

           Author contributions                                10.  Duan Y, Li X, Zhang S, et al., 2020, Therapeutic Potential
                                                                   of HERS Spheroids in  Tooth Regeneration.  Theranostics,
           H.T. performed the experiments and data analysis, and   10:7409–21.
           wrote the article. F.B. contributed in cell culture and      http://doi.org/10.7150/thno.44782
           animal experiments. G.C. designed the study and guided
           the experiments. Y.H. contributed in 3D bioprinting S.Z.   11.  Vijayavenkataraman  S,  Yan W,  Lu WF,  et  al., 2018, 3D
           and J.C. contributed in animal experiments. L.X. guided   Bioprinting of Tissues and Organs for Regenerative Medicine.
           the experiments. X.Q. contributed in 3D bioprinting and   Adv Drug Deliver Rev, 132:296–332.
           revised the article. W.G. designed the study and revised the      http://doi.org/10.1016/j.addr.2018.07.004
           article. All authors have read and approved the manuscript.  12.  Ji Y, Yang Q, Huang G, et al., 2019, Improved Resolution and

           References                                              Fidelity of Droplet-Based Bioprinting by Upward Ejection.
                                                                   ACS Biomater Sci Eng, 5:4112–21.
           1.   Nanci  A, editor, 2013, Development  of the  Tooth  and      http://doi.org/10.1021/acsbiomaterials.9b00400
               its Supporting  Tissues. In:  Ten Cate’s Oral Histology:   13.  Yang  Q,  Lian  Q,  Xu  F,  2017,  Perspective:  Fabrication  of
               Development, Structure, and Function. St. Louis, Missouri:   integrated organ-on-a-chip via bioprinting. Biomicrofluidics,
               Elsevier, Mosby. p70–71.                            11:31301.
               https://doi.org/10.1016/B978-0-323-07846-7.00005-7     http://doi.org/10.1063/1.4982945
           2.   Zhang YD, Chen Z, Song YQ, et al., 2005, Making a Tooth:   14.  Qing H, Ji Y, Li  W,  et al.,  2020,  Microfluidic  Printing  of
               Growth Factors, Transcription Factors, and Stem Cells. Cell   Three-Dimensional  Graphene  Electroactive  Microfibrous
               Res, 15:301–16.                                     Scaffolds. ACS Appl Mater Interfaces, 12:2049–58.
               http://doi.org/10.1038/sj.cr.7290299                http://doi.org/10.1021/acsami.9b17948
           3.   De Luca M, Aiuti A, Cossu G, et al., 2019, Advances in Stem   15.  Yang  Q,  Gao  B,  Xu  F,  2019,  Recent  Advances  in  4D
               Cell Research and Therapeutic Development. Nat Cell Biol,   Bioprinting. Biotechnol J, 15:1900086.
               21:801–11.                                          http://doi.org/10.1002/biot.201900086
               http://doi.org/10.1038/s41556-019-0344-z        16.  Bordas SP, Balint DS, editors, 2021, Mechanics of Hydrogel-
           4.   Ikeda E, Morita R, Nakao K, et al., 2009, Fully Functional   based Bioprinting: From 3D to 4D. In: Advances in Applied
               Bioengineered Tooth Replacement as an Organ Replacement   Mechanics. San Diego, CA: Elsevier. p285–318.
               Therapy. Proc Natl Acad Sci U S A, 106:13475–80.     https://doi.org/10.1016/bs.aams.2021.03.001
               http://doi.org/10.1073/pnas.0902944106          17.  Gao  B, Yang  Q,  Zhao  X,  et  al., 2016, 4D Bioprinting  for
           5.   Nakao K, Morita R, Saji Y, et al., 2007, The Development of a   Biomedical Applications. Trends Biotechnol, 34:746–56.
               Bioengineered Organ Germ Method. Nat Methods, 4:227–30.     http://doi.org/10.1016/j.tibtech.2016.03.004
               http://doi.org/10.1038/nmeth1012                18.  Zhou M, Lee BH, Tan LP, 2017, A Dual Crosslinking Strategy
           6.   Monteiro N, Smith EE, Angstadt S, et al., 2016, Dental Cell   to Tailor Rheological Properties of Gelatin Methacryloyl. Int
               Sheet Biomimetic Tooth Bud Model. Biomaterials, 106:167–79.  J Bioprinting, 3:3.
               http://doi.org/10.1016/j.biomaterials.2016.08.024     http://doi.org/10.18063/IJB.2017.02.003
           7.   Smith EE, Angstadt S, Monteiro N, et al., 2018, Bioengineered   19.  Ma  Y,  Xie  L,  Yang  B,  et al.,  2018,  Three‐Dimensional
               Tooth Buds Exhibit Features of Natural Tooth Buds. J Dent   Printing Biotechnology for the Regeneration of the Tooth and
               Res, 97:1144–51.                                    Tooth‐supporting Tissues. Biotechnol Bioeng, 116:452–68.
               http://doi.org/10.1177/0022034518779075             http://doi.org/10.1002/bit.26882
           8.   Nanci  A, editor, 2013, Development  of the  Tooth  and   20.  Yang T, Zhang Q, Xie L, et al., 2021, hDPSC-laden GelMA
               its Supporting  Tissues. In:  Ten Cate’s Oral Histology:   Microspheres Fabricated  Using Electrostatic  Microdroplet
               Development, Structure, and Function. St. Louis, Missouri:   Method for Endodontic Regeneration.  Mater Sci Eng C,
               Elsevier, Mosby. p89–90.                            121:111850.

           148                         International Journal of Bioprinting (2022)–Volume 8, Issue 3
   151   152   153   154   155   156   157   158   159   160   161