Page 238 - IJB-8-3
P. 238
Multifunctional 3D Printed Composite Hydrogel
https://doi.org/10.1016/j.apmt.2018.08.005 of Different Titania Nanotubes in Oxidative Stress
7. Heinrich MA, Liu W, Jimenez A, et al., 2019, 3D Bioprinting: Microenvironment. Biomaterials, 167:44–57.
From Benches to Translational Applications. Small, https://doi.org/10.1016/j.biomaterials.2018.03.024
15:1805510. 18. Atashi F, Modarressi A, Pepper MS, 2015, The Role of
https://doi.org/10.1002/smll.201805510 Reactive Oxygen Species in Mesenchymal Stem Cell
8. Haq M A, Su Y, Wang D, 2017, Mechanical Properties of Adipogenic and Osteogenic Differentiation: A Review. Stem
PNIPAM Based Hydrogels: A Review. Mater Sci Eng C, Cells Dev, 24:1150–63.
70:842–55. https://doi.org/10.1089/scd.2014.0484
https://doi.org/10.1016/j.msec.2016.09.081 19. Jiao H, Xiao E, Graves DT, 2015, Diabetes and Its Effect on
9. Mousa M, Evans ND, Oreffo R O C, et al., 2018, Clay Bone and Fracture Healing. Curr Osteop Reports, 13:327–35.
nanoparticles for regenerative medicine and biomaterial https://doi.org/10.1007/s11914-015-0286-8
design: A review of clay bioactivity. Biomaterials, 20. Nadgorny M, Collins J, Xiao Z, et al., 2018, 3D-printing of
159:204–14. Dynamic Self-healing Cryogels with Tuneable Properties.
https://doi.org/10.1016/j.biomaterials.2017.12.024 Polymer Chem, 9:1684–92.
10. Wei Y, Xiang L, Ou H, et al., 2020, MXene-based Conductive https://doi.org/10.1039/C7PY01945A
Organohydrogels with Long-term Environmental Stability 21. Zhou L, Ramezani H, Sun M, et al., 2020, 3D Printing of
and Multifunctionality. Adv Funct Mater, 30:2005135. High-strength Chitosan Hydrogel Scaffolds without any
https://doi.org/10.1002/adfm.202005135 Organic Solvents. Biomater Sci, 8:5020–8.
11. Ye Y, Zhang Y, Chen Y, et al., 2020, Cellulose Nanofibrils https://doi.org/10.1039/d0bm00896f
Enhanced, Strong, Stretchable, Freezing-tolerant Ionic 22. Ge W, Cao S, Shen F, et al., 2019, Rapid Self-healing,
Conductive Organohydrogel for Multi-Functional Sensors. Stretchable, Moldable, Antioxidant and Antibacterial
Adv Funct Mater, 30:2003430. Tannic Acid-cellulose Nanofibril Composite Hydrogels.
https://doi.org/10.1002/adfm.202003430 Carbohydrate Polymers, 224:115147.
12. Hong S, Sycks D, Chan HF, et al., 2015, 3D Printing of Highly https://doi.org/10.1016/j.carbpol.2019.115147
Stretchable and Tough Hydrogels into Complex, Cellularized 23. Lin F, Wang Z, Shen Y, et al., 2019, Natural Skin-inspired
Structures. Adv Mater, 27:4035–40. Versatile Cellulose Biomimetic Hydrogels. J Mater Chem A,
https://doi.org/10.1002/adma.201501099 7:26442–55.
13. Maiti C, Imani KB, Yoon J, 2021, Recent Advances in https://doi.org/10.1039/C9TA10502F
Design Strategies for Tough and Stretchable Hydrogels. 24. Li Q, Xu S, Feng Q, et al., 2021, 3D Printed Silk-gelatin
ChemPlusChem, 86:601–11. Hydrogel Scaffold with Different Porous Structure and
https://doi.org/10.1002/cplu.202100074 Cell Seeding Strategy for Cartilage Regeneration. Bioactive
14. Chen Y, Qiu Y, Wang Q, et al., 2020, Mussel-inspired Mater, 6:3396–410.
Sandwich-like Nanofibers/Hydrogel Composite with Super https://doi.org/10.1016/j.bioactmat.2021.03.013
Adhesive, Sustained Drug Release and Anti-infection 25. Osi AR, Zhang H, Chen J, et al., 2021, Three-Dimensional-
Capacity. Chem Eng J, 399:125668. Printable Thermo/Photo-Cross-Linked Methacrylated
https://doi.org/10.1016/j.cej.2020.125668 Chitosan-Gelatin Hydrogel Composites for Tissue
15. Zhai X, Ma Y, Hou C, et al., 2017, 3D-Printed High Strength Engineering. ACS Appl Mater Interfaces, 13:22902–13.
Bioactive Supramolecular Polymer/Clay Nanocomposite https://doi.org/10.1021/acsami.1c01321
Hydrogel Scaffold for Bone Regeneration. ACS Biomater Sci 26. Shirahama H, Lee BH, Tan LP, et al., 2016, Precise Tuning of
Eng, 3:1109–18. Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis. Sci
https://doi.org/10.1021/acsbiomaterials.7b00224 Reports, 6:11.
16. Liu X, Yang Y, Niu X, et al., 2017, An in Situ Photocrosslinkable https://doi.org/10.1038/srep31036
Platelet Rich Plasma-complexed Hydrogel Glue with Growth 27. Dong L, Bu Z, Xiong Y, et al., 2021, Facile Extrusion 3D
Factor Controlled Release Ability to Promote Cartilage Printing of Gelatine Methacrylate/Laponite Nanocomposite
Defect Repair. Acta Biomater, 62:179–87. Hydrogel with High Concentration Nanoclay for Bone Tissue
https://doi.org/10.1016/j.actbio.2017.05.023 Regeneration. Int J Biol Macsromol, 188:72–81.
17. Yu Y, Shen X, Luo Z, et al., 2018, Osteogenesis Potential https://doi.org/10.1016/j.ijbiomac.2021.07.199
230 International Journal of Bioprinting (2022)–Volume 8, Issue 3

