Page 238 - IJB-8-3
P. 238

Multifunctional 3D Printed Composite Hydrogel
               https://doi.org/10.1016/j.apmt.2018.08.005          of  Different  Titania  Nanotubes  in  Oxidative  Stress
           7.   Heinrich MA, Liu W, Jimenez A, et al., 2019, 3D Bioprinting:   Microenvironment. Biomaterials, 167:44–57.
               From  Benches  to  Translational  Applications.  Small,      https://doi.org/10.1016/j.biomaterials.2018.03.024
               15:1805510.                                     18.  Atashi F, Modarressi  A, Pepper  MS, 2015,  The  Role  of
               https://doi.org/10.1002/smll.201805510              Reactive  Oxygen Species in Mesenchymal  Stem Cell
           8.   Haq M A, Su Y, Wang D, 2017, Mechanical Properties of   Adipogenic and Osteogenic Differentiation: A Review. Stem
               PNIPAM Based  Hydrogels:  A  Review.  Mater  Sci  Eng  C,   Cells Dev, 24:1150–63.
               70:842–55.                                          https://doi.org/10.1089/scd.2014.0484
               https://doi.org/10.1016/j.msec.2016.09.081      19.  Jiao H, Xiao E, Graves DT, 2015, Diabetes and Its Effect on
           9.   Mousa  M,  Evans  ND,  Oreffo  R  O  C, et al., 2018, Clay   Bone and Fracture Healing. Curr Osteop Reports, 13:327–35.
               nanoparticles for regenerative medicine and biomaterial      https://doi.org/10.1007/s11914-015-0286-8
               design:  A  review of clay bioactivity.  Biomaterials,   20.  Nadgorny M, Collins J, Xiao Z, et al., 2018, 3D-printing of
               159:204–14.                                         Dynamic  Self-healing  Cryogels  with  Tuneable  Properties.
               https://doi.org/10.1016/j.biomaterials.2017.12.024  Polymer Chem, 9:1684–92.
           10.  Wei Y, Xiang L, Ou H, et al., 2020, MXene-based Conductive      https://doi.org/10.1039/C7PY01945A
               Organohydrogels  with  Long-term  Environmental  Stability   21.  Zhou L, Ramezani H, Sun M, et al., 2020, 3D Printing of
               and Multifunctionality. Adv Funct Mater, 30:2005135.  High-strength  Chitosan  Hydrogel  Scaffolds  without  any
               https://doi.org/10.1002/adfm.202005135              Organic Solvents. Biomater Sci, 8:5020–8.
           11.  Ye Y, Zhang Y, Chen Y, et al., 2020, Cellulose Nanofibrils      https://doi.org/10.1039/d0bm00896f
               Enhanced,  Strong, Stretchable,  Freezing-tolerant  Ionic   22.  Ge  W, Cao S, Shen F, et al., 2019, Rapid Self-healing,
               Conductive  Organohydrogel  for Multi-Functional  Sensors.   Stretchable,  Moldable,  Antioxidant  and Antibacterial
               Adv Funct Mater, 30:2003430.                        Tannic  Acid-cellulose  Nanofibril  Composite  Hydrogels.
               https://doi.org/10.1002/adfm.202003430              Carbohydrate Polymers, 224:115147.
           12.  Hong S, Sycks D, Chan HF, et al., 2015, 3D Printing of Highly      https://doi.org/10.1016/j.carbpol.2019.115147
               Stretchable and Tough Hydrogels into Complex, Cellularized   23.  Lin F, Wang Z, Shen Y, et al., 2019, Natural Skin-inspired
               Structures. Adv Mater, 27:4035–40.                  Versatile Cellulose Biomimetic Hydrogels. J Mater Chem A,
               https://doi.org/10.1002/adma.201501099              7:26442–55.
           13.  Maiti  C, Imani  KB,  Yoon J, 2021, Recent  Advances in      https://doi.org/10.1039/C9TA10502F
               Design Strategies for  Tough and Stretchable  Hydrogels.   24.  Li Q, Xu S, Feng Q, et al., 2021, 3D Printed Silk-gelatin
               ChemPlusChem, 86:601–11.                            Hydrogel  Scaffold  with  Different  Porous  Structure  and
               https://doi.org/10.1002/cplu.202100074              Cell Seeding Strategy for Cartilage Regeneration. Bioactive
           14.  Chen Y,  Qiu Y,  Wang  Q, et al., 2020, Mussel-inspired   Mater, 6:3396–410.
               Sandwich-like  Nanofibers/Hydrogel  Composite  with  Super      https://doi.org/10.1016/j.bioactmat.2021.03.013
               Adhesive, Sustained Drug  Release and  Anti-infection   25.  Osi AR, Zhang H, Chen J, et al., 2021, Three-Dimensional-
               Capacity. Chem Eng J, 399:125668.                   Printable  Thermo/Photo-Cross-Linked  Methacrylated
               https://doi.org/10.1016/j.cej.2020.125668           Chitosan-Gelatin  Hydrogel  Composites  for  Tissue
           15.  Zhai X, Ma Y, Hou C, et al., 2017, 3D-Printed High Strength   Engineering. ACS Appl Mater Interfaces, 13:22902–13.
               Bioactive  Supramolecular  Polymer/Clay  Nanocomposite      https://doi.org/10.1021/acsami.1c01321
               Hydrogel Scaffold for Bone Regeneration. ACS Biomater Sci   26.  Shirahama H, Lee BH, Tan LP, et al., 2016, Precise Tuning of
               Eng, 3:1109–18.                                     Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis. Sci
               https://doi.org/10.1021/acsbiomaterials.7b00224     Reports, 6:11.
           16.  Liu X, Yang Y, Niu X, et al., 2017, An in Situ Photocrosslinkable      https://doi.org/10.1038/srep31036
               Platelet Rich Plasma-complexed Hydrogel Glue with Growth   27.  Dong L, Bu Z, Xiong Y, et al., 2021, Facile Extrusion 3D
               Factor  Controlled  Release  Ability to  Promote  Cartilage   Printing of Gelatine Methacrylate/Laponite Nanocomposite
               Defect Repair. Acta Biomater, 62:179–87.            Hydrogel with High Concentration Nanoclay for Bone Tissue
               https://doi.org/10.1016/j.actbio.2017.05.023        Regeneration. Int J Biol Macsromol, 188:72–81.
           17.  Yu Y, Shen X, Luo Z, et al., 2018, Osteogenesis Potential      https://doi.org/10.1016/j.ijbiomac.2021.07.199

           230                         International Journal of Bioprinting (2022)–Volume 8, Issue 3
   233   234   235   236   237   238   239   240   241   242   243