Page 167 - IJB-8-4
P. 167
Yang, et al.
matrix (ECM) - Mimetic coating for cardiovascular stents 36. Ouyang L, 2022, Pushing the rheological and mechanical
by stepwise assembly of hyaluronic acid and recombinant boundaries of extrusion-based 3D bioprinting. Trends
human Type III collagen. Biomaterials, 276:121055. Biotechnol. 40:891–902.
https://doi.org/10.1016/j.biomaterials.2021.121055 https://doi.org/10.1016/j.tibtech.2022.01.001
25. Fushimi H, Hiratsuka T, Okamura A, et al., 2020, 37. Barros NR, Kim HJ, Gouidie MJ, et al., 2021, Biofabrication
Recombinant collagen polypeptide as a versatile bone graft of endothelial cell, dermal fibroblast, and multilayered
biomaterial. Commun Mater, 1:87. keratinocyte layers for skin tissue engineering. Biofabrication,
https://doi.org/10.1038/s43246-020-00089-9 13:035030.
26. Huang J, Lei X, Huang Z, et al., 2022, Bioprinted gelatin- https://doi.org/10.1088/1758-5090/aba503
recombinant Type III collagen hydrogel promotes wound 38. Shie MY, Lee JJ, Ho CC, et al., 2020, Effects of Gelatin
healing. Int J Bioprint, 8:517. Methacrylate Bio-ink Concentration on Mechano-Physical
https://doi.org/10.18063/ijb.v8i2.517 Properties and Human Dermal Fibroblast Behavior. Polymers
27. Gelse K, Pöschl E, Aigner T, 2003, Collagens–structure, (Basel), 12:1930.
function, and biosynthesis. Adv Drug Deliv Rev, 55:1531–46. https://doi.org/10.3390/polym12091930
https://doi.org/10.1016/j.addr.2003.08.002 39. Martin P, 1997, Wound healing - Aiming for perfect skin
28. Zhou F, Hong Y, Liang R, et al., 2020, Rapid printing of regeneration. Science, 276:75–81.
bio-inspired 3D tissue constructs for skin regeneration. https://doi.org/10.1126/science.276.5309.75
Biomaterials, 258:120287. 40. Fang C, Yue S, Mohanasundaram P, et al., 2016, Vimentin
https://doi.org/10.1016/j.biomaterials.2020.120287 coordinates fibroblast proliferation and keratinocyte
29. Nielsen MJ, Karsdal MA, 2016, Type III collagen. In: differentiation in wound healing via TGF-β–Slug signaling.
Karsdal MA, editor. Biochemistry of Collagens, Laminins Proc Natl Acad Sci U S A, 113:E4320–7.
and Elastin. Ch. 3. Massachusetts, United States: Academic https://doi.org/10.1073/pnas.1519197113
Press. p21-30. 41. Kwon EJ, Park EJ, Yu H, et al., 2018, SIRT-1 regulates TGF-
30. Ribeiro A, Blokzijl MM, Levato R, et al., 2017, Assessing β-induced dermal fibroblast migration via modulation of
bioink shape fidelity to aid material development in 3D Cyr61 expression. Connect Tissue Res, 59:245–54.
bioprinting. Biofabrication, 10:014102. https://doi.org/10.1080/03008207.2017.1360293
https://doi.org/10.1088/1758-5090/aa90e2 42. Baranyi U, Winter B, Gugerell A, et al., 2019, Primary
31. Ouyang L, Yao R, Zhao Y, et al., 2016, Effect of bioink Human Fibroblasts in Culture Switch to a Myofibroblast-Like
properties on printability and cell viability for 3D bioplotting Phenotype Independently of TGF Beta. Cells, 8:721.
of embryonic stem cells. Biofabrication, 8:035020. https://doi.org/10.3390/cells8070721
https://doi.org/10.1088/1758-5090/8/3/035020 43. Ibañez RI, do Amaral RJ, Reis RL, et al., 2021, 3D-Printed
32. Bonnans C, Chou J, Werb Z, 2014, Remodelling the Gelatin Methacrylate Scaffolds with Controlled Architecture
extracellular matrix in development and disease. Nat Rev Mol and Stiffness Modulate the Fibroblast Phenotype towards
Cell Biol, 15:786–801. Dermal Regeneration. Polymers (Basel), 13:2510.
https://doi.org/10.1038/nrm3904 https://doi.org/10.3390/polym13152510
33. Reis LA, Chiu L, Yan L, et al., 2012, A peptide-modified 44. Chester D, Lee V, Wagner P, et al., 2022, Elucidating the
chitosan–collagen hydrogel for cardiac cell culture and combinatorial effect of substrate stiffness and surface
delivery. Acta Biomater, 8:1022–36. viscoelasticity on cellular phenotype. J Biomed Mater Res A,
https://doi.org/10.1016/j.actbio.2011.11.030 110:1224–37.
34. Ouyang L, Wojciechowski JP, 2022, Tunable Microgel- https://doi.org/10.1002/jbm.a.37367
Templated Porogel (MTP) Bioink for 3D Bioprinting 45. Aldana AA, Valente F, Dilley R, et al., 2021, Development
Applications. Adv Healthc Mater, 11:e2200027. of 3D bioprinted GelMA-alginate hydrogels with tunable
https://doi.org/10.1002/adhm.202200027 mechanical properties. Bioprinting, 21:e00105.
35. Ouyang L, Armstrong JP, Lin Y, et al., 2020, Expanding and https://doi.org/10.1016/j.bprint.2020.e00105
optimizing 3D bioprinting capabilities using complementary 46. Ha JH, Lim JH, Kim JW, et al., 2021, Conductive GelMA–
network bioinks. Sci Adv, 6:eabc5529. Collagen–AgNW Blended Hydrogel for Smart Actuator.
https://doi.org/10.1126/sciadv.abc5529 Polymers (Basel), 13:1217.
International Journal of Bioprinting (2022)–Volume 8, Issue 4 159

