Page 167 - IJB-8-4
P. 167

Yang, et al.
               matrix (ECM)  -  Mimetic  coating for cardiovascular  stents   36.  Ouyang L, 2022, Pushing the rheological  and mechanical
               by stepwise assembly of hyaluronic acid and recombinant   boundaries of extrusion-based 3D bioprinting.  Trends
               human Type III collagen. Biomaterials, 276:121055.  Biotechnol. 40:891–902.
               https://doi.org/10.1016/j.biomaterials.2021.121055     https://doi.org/10.1016/j.tibtech.2022.01.001
           25.  Fushimi  H, Hiratsuka  T, Okamura  A, et  al., 2020,   37.  Barros NR, Kim HJ, Gouidie MJ, et al., 2021, Biofabrication
               Recombinant collagen polypeptide as a versatile bone graft   of  endothelial  cell,  dermal  fibroblast,  and  multilayered
               biomaterial. Commun Mater, 1:87.                    keratinocyte layers for skin tissue engineering. Biofabrication,
               https://doi.org/10.1038/s43246-020-00089-9          13:035030.
           26.  Huang J, Lei X, Huang Z, et al., 2022, Bioprinted gelatin-     https://doi.org/10.1088/1758-5090/aba503
               recombinant  Type  III collagen  hydrogel  promotes  wound   38.  Shie MY, Lee  JJ, Ho CC, et al.,  2020,  Effects  of  Gelatin
               healing. Int J Bioprint, 8:517.                     Methacrylate  Bio-ink Concentration on Mechano-Physical
               https://doi.org/10.18063/ijb.v8i2.517               Properties and Human Dermal Fibroblast Behavior. Polymers
           27.  Gelse K, Pöschl E,  Aigner  T, 2003, Collagens–structure,   (Basel), 12:1930.
               function, and biosynthesis. Adv Drug Deliv Rev, 55:1531–46.     https://doi.org/10.3390/polym12091930
               https://doi.org/10.1016/j.addr.2003.08.002      39.  Martin  P, 1997,  Wound healing  - Aiming  for perfect  skin
           28.  Zhou F, Hong Y, Liang  R, et  al., 2020, Rapid  printing  of   regeneration. Science, 276:75–81.
               bio-inspired  3D tissue  constructs for skin regeneration.      https://doi.org/10.1126/science.276.5309.75
               Biomaterials, 258:120287.                       40.  Fang C, Yue S, Mohanasundaram P, et al., 2016, Vimentin
               https://doi.org/10.1016/j.biomaterials.2020.120287  coordinates  fibroblast  proliferation  and  keratinocyte
           29.  Nielsen MJ, Karsdal MA,  2016,  Type  III collagen. In:   differentiation in wound healing via TGF-β–Slug signaling.
               Karsdal MA,  editor. Biochemistry of Collagens, Laminins   Proc Natl Acad Sci U S A, 113:E4320–7.
               and Elastin. Ch. 3. Massachusetts, United States: Academic      https://doi.org/10.1073/pnas.1519197113
               Press. p21-30.                                  41.  Kwon EJ, Park EJ, Yu H, et al., 2018, SIRT-1 regulates TGF-
           30.  Ribeiro A, Blokzijl MM, Levato R, et al., 2017, Assessing   β-induced  dermal  fibroblast  migration  via  modulation  of
               bioink  shape  fidelity  to  aid  material  development  in  3D   Cyr61 expression. Connect Tissue Res, 59:245–54.
               bioprinting. Biofabrication, 10:014102.             https://doi.org/10.1080/03008207.2017.1360293
               https://doi.org/10.1088/1758-5090/aa90e2        42.  Baranyi  U,  Winter  B, Gugerell  A, et  al., 2019, Primary
           31.  Ouyang L,  Yao R, Zhao  Y, et al.,  2016,  Effect  of  bioink   Human Fibroblasts in Culture Switch to a Myofibroblast-Like
               properties on printability and cell viability for 3D bioplotting   Phenotype Independently of TGF Beta. Cells, 8:721.
               of embryonic stem cells. Biofabrication, 8:035020.     https://doi.org/10.3390/cells8070721
               https://doi.org/10.1088/1758-5090/8/3/035020    43.  Ibañez RI, do Amaral RJ, Reis RL, et al., 2021, 3D-Printed
           32.  Bonnans C, Chou  J,  Werb Z,  2014, Remodelling  the   Gelatin Methacrylate Scaffolds with Controlled Architecture
               extracellular matrix in development and disease. Nat Rev Mol   and  Stiffness  Modulate  the  Fibroblast  Phenotype  towards
               Cell Biol, 15:786–801.                              Dermal Regeneration. Polymers (Basel), 13:2510.
               https://doi.org/10.1038/nrm3904                     https://doi.org/10.3390/polym13152510
           33.  Reis LA, Chiu L, Yan L, et al.,  2012, A  peptide-modified   44.  Chester D, Lee  V,  Wagner  P, et al., 2022, Elucidating  the
               chitosan–collagen  hydrogel  for cardiac  cell  culture  and   combinatorial  effect  of  substrate  stiffness  and  surface
               delivery. Acta Biomater, 8:1022–36.                 viscoelasticity on cellular phenotype. J Biomed Mater Res A,
               https://doi.org/10.1016/j.actbio.2011.11.030        110:1224–37.
           34.  Ouyang L,  Wojciechowski  JP, 2022,  Tunable  Microgel-     https://doi.org/10.1002/jbm.a.37367
               Templated  Porogel (MTP) Bioink for 3D Bioprinting   45.  Aldana AA, Valente F, Dilley R, et al., 2021, Development
               Applications. Adv Healthc Mater, 11:e2200027.       of 3D bioprinted  GelMA-alginate hydrogels with tunable
               https://doi.org/10.1002/adhm.202200027              mechanical properties. Bioprinting, 21:e00105.
           35.  Ouyang L, Armstrong JP, Lin Y, et al., 2020, Expanding and      https://doi.org/10.1016/j.bprint.2020.e00105
               optimizing 3D bioprinting capabilities using complementary   46.  Ha JH, Lim JH, Kim JW, et al., 2021, Conductive GelMA–
               network bioinks. Sci Adv, 6:eabc5529.               Collagen–AgNW Blended  Hydrogel  for Smart  Actuator.
               https://doi.org/10.1126/sciadv.abc5529              Polymers (Basel), 13:1217.

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 4       159
   162   163   164   165   166   167   168   169   170   171   172