Page 178 - IJB-8-4
P. 178

Metal 3DP Hybrid Suture Anchor for Osteoporosis
               http://doi.org/10.1016/j.mporth.2016.12.001     12.  Guyer RD, Abitbol JJ, Ohnmeiss DD, et al., 2016, Evaluating
           2.   Ma R, Chow R, Choi L, et al., 2011, Arthroscopic Rotator   Osseointegration  into  a  Deeply  Porous  Titanium  Scaffold:
               Cuff  Repair:  Suture  Anchor  Properties,  Modes  of  Failure   A  Biomechanical  Comparison with PEEK and  Allograft.
               and Technical  Considerations.  Expert Rev  Med Devices,   Spine, 41:E1146–50.
               8:377–87.                                           http://doi.org/10.1097/brs.0000000000001672
               http://doi.org/10.1586/erd.11.4                 13.  Huang S, Narayan RL,  Tan JH,  et al., 2021, Resolving
           3.   Braunstein V, Ockert B, Windolf M, et al., 2015, Increasing   the Porosity-unmelted  Inclusion Dilemma  during  in-situ
               Pullout Strength of Suture  Anchors in Osteoporotic Bone   Alloying  of  Ti34Nb  Via  Laser  Powder  Bed  Fusion.  Acta
               using  Augmentation--a  Cadaver Study.  Clin Biomech,   Mater, 204:116522.
               30:243–7.                                           http://doi.org/10.1016/j.actamat.2020.116522
               http://doi.org/10.1016/j.clinbiomech.2015.02.002  14.  Wang D, Liu L, Deng G,  et al., 2022, Recent Progress
           4.   Horoz L, Hapa O, Barber FA, et al., 2017, Suture Anchor   on Additive Manufacturing of Multi-material Structures
               Fixation in Osteoporotic Bone: A Biomechanical Study in an   with  Laser  Powder  Bed  Fusion.  Virtual  Phys  Prototyp,
               Ovine Model. Arthroscopy, 33:68–74.                 17:329–65.
               http://doi.org/10.1016/j.arthro.2016.05.040         http://doi.org/10.1080/17452759.2022.2028343
           5.   Rosso  C, Weber T,  Dietschy  A,  et al.,  2020, Three   15.  Yu  W,  Xiao  Z,  Zhang  X,  et  al., 2022, Processing and
               Anchor  Concepts  for  Rotator  Cuff  Repair  in  Standardized   Characterization of Crack-free 7075 Aluminum Alloys with
               Physiological  and  Osteoporotic  Bone:  A  Biomechanical   Elemental  Zr  Modification  by  Laser  Powder  Bed  Fusion.
               Study. J Shoulder Elbow Surg, 29:e52–9.             Mater. Sci Addit Manuf, 1:4.
               http://doi.org/10.1016/j.jse.2019.07.032            http://doi.org/10.18063/msam.v1i1.4
           6.   Chae SW, Kang JY, Lee J, et al., 2018, Effect of Structural   16.  Li CH, Wu CH, Lin CL, 2020, Design of a Patient-specific
               Design on the Pullout Strength of Suture Anchors for Rotator   Mandible  Reconstruction  Implant  with Dental  Prosthesis
               Cuff Repair. J Orthop Res, 36:3318–27.              for Metal 3D Printing using Integrated Weighted Topology
               http://doi.org/10.1002/jor.24135                    Optimization  and  Finite  Element Analysis.  J  Mech Behav
           7.   Barber FA, Herbert MA, Hapa O, et al., 2011, Biomechanical   Biomed Mater, 105:103700.
               Analysis of Pullout Strengths of Rotator Cuff and Glenoid      http://doi.org/10.1016/j.jmbbm.2020.103700
               Anchors: 2011 Update. Arthroscopy, 27:895–905.  17.  Arslan AK,  Demir T,  Ormeci  MF,  et  al., 2013,  Postfusion
               http://doi.org/10.1016/j.arthro.2011.02.016         Pullout Strength Comparison of a Novel Pedicle Screw with
           8.   Tingart  MJ, Apreleva  M, Lehtinen  J,  et  al.,  2004, Anchor   Classical Pedicle Screws on Synthetic Foams. Proc Inst Mech
               Design  and  Bone  Mineral  Density  Affect  the  Pull-out   Eng H, 227:114–9.
               Strength of Suture Anchors in Rotator Cuff Repair: Which      http://doi.org/10.1177/0954411912463323
               Anchors are Best to Use in Patients with Low Bone Quality?   18.  Hsu JT, Huang HL, Chang CH, et al., 2013, Relationship
               Am. J. Sports Med, 32:1466–73.                      of  Three-dimensional Bone-to-implant Contact to
               http://doi.org/10.1177/0363546503262644             Primary Implant Stability and Peri-implant Bone Strain
           9.   Trindade R, Albrektsson T, Galli S, et al., 2018, Bone Immune   in  Immediate  Loading:  Microcomputed  Tomographic
               Response to Materials, Part I: Titanium, PEEK and Copper in   and  in vitro Analyses.  Int J Oral Maxillofac Implants,
               Comparison to Sham at 10 Days in Rabbit Tibia. J Clin Med,   28:367–74.
               7:526.                                              http://doi.org/10.11607/jomi.2407
               http://doi.org/10.3390/jcm7120526               19.  Nagaraja S, Palepu V, 2016, Comparisons of Anterior Plate
           10.  Alan  Barber  F,  Boothby  MH,  Richards  DP,  2006,  New   Screw  Pullout  Strength  between  Polyurethane  Foams  and
               Sutures and Suture Anchors in Sports Medicine. Sports Med.   Thoracolumbar Cadaveric Vertebrae. J Biomech Eng, 1:138.
               Arthrosc, 14:177–84.                                http://doi.org/10.1115/1.4034427
               http://doi.org/10.1097/00132585-200609000-00010  20.  Bateman AH, Balkovec C, Akens MK, et al., 2016, Closure
           11.  McFarland EG, Park HB, Keyurapan E, et al., 2005, Suture   of  the Annulus  Fibrosus  of  the  Intervertebral  Disc  using  a
               Anchors and Tacks for Shoulder Surgery, Part 1: Biology and   Novel Suture Application Device-in vivo Porcine and ex vivo
               Biomechanics. Am J Sports Med, 33:1918–23.          Biomechanical Evaluation. Spine J, 16:889–95.
               http://doi.org/10.1177/0363546505282621             http://doi.org/10.1016/j.spinee.2016.03.005

           170                         International Journal of Bioprinting (2022)–Volume 8, Issue 4
   173   174   175   176   177   178   179   180   181   182   183