Page 21 - IJB-8-4
P. 21

Shi, et al.
           19.  Farokhi  M,  Mottaghitalab  F,  Samani  S, et al.,  2018,  Silk   of Bone and What They Can Teach Us about Regeneration.
               Fibroin/Hydroxyapatite  Composites  for  Bone  Tissue   Materials, 11:14.
               Engineering. Biotechnol Adv, 36:68–91.              https://doi.org/10.3390/ma11010014
               https://doi.org/10.1016/j.biotechadv.2017.10.001  30.  Fitzpatrick  V,  Martin-Moldes  Z,  Deck  A,  et  al.,  2021,
           20.  Coelho  F,  Cavicchioli  M,  Specian  SS, et al.,  2020,  Silk   Functionalized  3D-printed  Silk-hydroxyapatite  Scaffolds
               Fibroin/Hydroxyapatite Composite Membranes: Production,   for  Enhanced  Bone  Regeneration  with  Innervation  and
               Characterization  and  Toxicity  Evaluation.  Toxicology  In   Vascularization. Biomaterials, 276:120995.
               Vitro, 62:104670.                                   https://doi.org/10.1016/j.biomaterials.2021.120995
               https://doi.org/10.1016/j.tiv.2019.104670       31.  Arahira T, Todo M, 2019, Development of Novel Collagen
           21.  Cheng W, Ding Z, Zheng X, et al., 2020, Injectable Hydrogel   Scaffolds with Different Bioceramic Particles for Bone Tissue
               Systems with Multiple Biophysical and Biochemical Cues for   Engineering. Compos Commun, 16:30–2.
               Bone Regeneration. Biomater Sci, 8:2537–48.         https://doi.org/10.1016/j.coco.2019.08.012
               https://doi.org/10.1039/d0bm00104j              32.  Zhou  H,  Yang  L,  Gbureck  U, et al.,  2021,  Monetite,  an
           22.  Huang T, Fan C, Zhu M, et al., 2019, 3D-printed Scaffolds   Important  Calcium  Phosphate  Compound-its  Synthesis,
               of  Biomineralized  Hydroxyapatite  Nanocomposite  on  Silk   Properties and Applications in Orthopedics. Acta Biomater,
               Fibroin for Improving Bone Regeneration. Appl Surface Sci,   127:41–55.
               467:345–53.                                         https://doi.org/10.1016/j.actbio.2021.03.050
               https://doi.org/10.1016/j.apsusc.2018.10.166    33.  Bohner M, Gbureck U, 2008, Thermal Reactions of Brushite
           23.  Kundu B, Brancato V, Oliveira JM, et al., 2020, Silk Fibroin   Cements.  J  Biomed Mater Res Part  B  Appl Biomater,
               Promotes Mineralization of Gellan Gum Hydrogels. Int J Biol   84B:375–85.
               Macromol, 153:1328–34.                              https://doi.org/375-385,10.1002/jbm.b.30881.
               https://doi.org/10.1016/j.ijbiomac.2019.10.269  34.  Tamimi F, Sheikh Z, Barralet J, 2012, Dicalcium Phosphate
           24.  Zhang H, You R, Yan K, et al., 2020, Silk as Templates for   Cements: Brushite and Monetite. Acta Biomater, 8:474–87.
               Hydroxyapatite Biomineralization: A Comparative Study of      https://doi.org/10.1016/j.actbio.2011.08.005
               Bombyx mori and  Antheraea pernyi  Silkworm  Silks.  Int J   35.  Idowu B, Cama G, Deb S, et al., 2014, In Vitro Osteoinductive
               Biol Macromol, 164:2842–50.                         Potential of Porous Monetite for Bone Tissue Engineering.
               https://doi.org/10.1016/j.ijbiomac.2020.08.142      J Tissue Eng, 5:2041731414536572.
           25.  Li  H,  Li  N,  Zhang  H, et  al.,  2020,  Three-Dimensional      https://doi.org/2041731414536572-2041731414536572
               Bioprinting  of  Perfusable  Hierarchical  Microchannels  with   36.  Torres J, Tamimi I, Cabrejos-Azama J, et al., 2015, Monetite
               Alginate and Silk Fibroin Double Cross-linked Network. 3d   Granules  Versus  Particulate  Autologous  Bone  in  Bone
               Print Addit Manuf, 7:78–84.                         Regeneration. Ann Anat, 200:126–33.
               https://doi.org/10.1089/3dp.2019.0115               https://doi.org/10.1016/j.aanat.2015.03.008
           26.  Meng  ZY,  Wang  L,  Shen  LY, et al.,  2021,  Supercritical   37.  Motameni  A,  Alshemary  AZ,  Evis  Z,  2021,  A  Review  of
               Carbon Dioxide Assisted Fabrication of Biomimetic Sodium   Synthesis Methods, Properties and Use of Monetite Cements
               Alginate/Silk Fibroin Nanofibrous Scaffolds. J Appl Polym   as Filler for Bone Defects. Ceram Int, 47:13245–56.
               Sci, 138:51421.                                     https://doi.org/10.1016/j.ceramint.2021.01.240
               https://doi.org/10.1002/app.51421               38.  Jin Y, Kundu B, Cai Y, et al., 2015, Bio-inspired Mineralization
           27.  Beck EC, Barragan M, Tadros MH, et al., 2016, Approaching   of  Hydroxyapatite  in  3D  Silk  Fibroin  Hydrogel  for  Bone
               the  Compressive  Modulus  of  Articular  Cartilage  with  a   Tissue Engineering. Colloids Sur B Biointerf, 134:339–45.
               Decellularized  Cartilage-based  Hydrogel.  Acta Biomater,      https://doi.org/10.1016/j.colsurfb.2015.07.015
               38:94–105.                                      39.  Chen  J,  Wang  H,  Wu  Y, et al.,  2022,  Biocompatible
               https://doi.org/10.1016/j.actbio.2016.04.019        Octacalcium  Phosphate/Sodium  Alginate/Silk  Fibroin
           28.  Loh QL, Choong C, 2013, Three-Dimensional Scaffolds for   Composite  Scaffolds  for  Bone  Regeneration.  Mater Today
               Tissue Engineering Applications: Role of Porosity and Pore   Commun, 31:103312.
               Size. Tissue Eng Part B Rev, 19:485–502.            https://doi.org/10.1016/j.mtcomm.2022.103312
               https://doi.org/10.1089/ten.teb.2012.0437       40.  Mo C, Holland C, Porter D, et al., 2009, Concentration State
           29.  Le BQ, Nurcombe V, Cool SM, et al., 2018, The Components   Dependence of the Rheological and Structural Properties of

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 4        13
   16   17   18   19   20   21   22   23   24   25   26