Page 21 - IJB-8-4
P. 21
Shi, et al.
19. Farokhi M, Mottaghitalab F, Samani S, et al., 2018, Silk of Bone and What They Can Teach Us about Regeneration.
Fibroin/Hydroxyapatite Composites for Bone Tissue Materials, 11:14.
Engineering. Biotechnol Adv, 36:68–91. https://doi.org/10.3390/ma11010014
https://doi.org/10.1016/j.biotechadv.2017.10.001 30. Fitzpatrick V, Martin-Moldes Z, Deck A, et al., 2021,
20. Coelho F, Cavicchioli M, Specian SS, et al., 2020, Silk Functionalized 3D-printed Silk-hydroxyapatite Scaffolds
Fibroin/Hydroxyapatite Composite Membranes: Production, for Enhanced Bone Regeneration with Innervation and
Characterization and Toxicity Evaluation. Toxicology In Vascularization. Biomaterials, 276:120995.
Vitro, 62:104670. https://doi.org/10.1016/j.biomaterials.2021.120995
https://doi.org/10.1016/j.tiv.2019.104670 31. Arahira T, Todo M, 2019, Development of Novel Collagen
21. Cheng W, Ding Z, Zheng X, et al., 2020, Injectable Hydrogel Scaffolds with Different Bioceramic Particles for Bone Tissue
Systems with Multiple Biophysical and Biochemical Cues for Engineering. Compos Commun, 16:30–2.
Bone Regeneration. Biomater Sci, 8:2537–48. https://doi.org/10.1016/j.coco.2019.08.012
https://doi.org/10.1039/d0bm00104j 32. Zhou H, Yang L, Gbureck U, et al., 2021, Monetite, an
22. Huang T, Fan C, Zhu M, et al., 2019, 3D-printed Scaffolds Important Calcium Phosphate Compound-its Synthesis,
of Biomineralized Hydroxyapatite Nanocomposite on Silk Properties and Applications in Orthopedics. Acta Biomater,
Fibroin for Improving Bone Regeneration. Appl Surface Sci, 127:41–55.
467:345–53. https://doi.org/10.1016/j.actbio.2021.03.050
https://doi.org/10.1016/j.apsusc.2018.10.166 33. Bohner M, Gbureck U, 2008, Thermal Reactions of Brushite
23. Kundu B, Brancato V, Oliveira JM, et al., 2020, Silk Fibroin Cements. J Biomed Mater Res Part B Appl Biomater,
Promotes Mineralization of Gellan Gum Hydrogels. Int J Biol 84B:375–85.
Macromol, 153:1328–34. https://doi.org/375-385,10.1002/jbm.b.30881.
https://doi.org/10.1016/j.ijbiomac.2019.10.269 34. Tamimi F, Sheikh Z, Barralet J, 2012, Dicalcium Phosphate
24. Zhang H, You R, Yan K, et al., 2020, Silk as Templates for Cements: Brushite and Monetite. Acta Biomater, 8:474–87.
Hydroxyapatite Biomineralization: A Comparative Study of https://doi.org/10.1016/j.actbio.2011.08.005
Bombyx mori and Antheraea pernyi Silkworm Silks. Int J 35. Idowu B, Cama G, Deb S, et al., 2014, In Vitro Osteoinductive
Biol Macromol, 164:2842–50. Potential of Porous Monetite for Bone Tissue Engineering.
https://doi.org/10.1016/j.ijbiomac.2020.08.142 J Tissue Eng, 5:2041731414536572.
25. Li H, Li N, Zhang H, et al., 2020, Three-Dimensional https://doi.org/2041731414536572-2041731414536572
Bioprinting of Perfusable Hierarchical Microchannels with 36. Torres J, Tamimi I, Cabrejos-Azama J, et al., 2015, Monetite
Alginate and Silk Fibroin Double Cross-linked Network. 3d Granules Versus Particulate Autologous Bone in Bone
Print Addit Manuf, 7:78–84. Regeneration. Ann Anat, 200:126–33.
https://doi.org/10.1089/3dp.2019.0115 https://doi.org/10.1016/j.aanat.2015.03.008
26. Meng ZY, Wang L, Shen LY, et al., 2021, Supercritical 37. Motameni A, Alshemary AZ, Evis Z, 2021, A Review of
Carbon Dioxide Assisted Fabrication of Biomimetic Sodium Synthesis Methods, Properties and Use of Monetite Cements
Alginate/Silk Fibroin Nanofibrous Scaffolds. J Appl Polym as Filler for Bone Defects. Ceram Int, 47:13245–56.
Sci, 138:51421. https://doi.org/10.1016/j.ceramint.2021.01.240
https://doi.org/10.1002/app.51421 38. Jin Y, Kundu B, Cai Y, et al., 2015, Bio-inspired Mineralization
27. Beck EC, Barragan M, Tadros MH, et al., 2016, Approaching of Hydroxyapatite in 3D Silk Fibroin Hydrogel for Bone
the Compressive Modulus of Articular Cartilage with a Tissue Engineering. Colloids Sur B Biointerf, 134:339–45.
Decellularized Cartilage-based Hydrogel. Acta Biomater, https://doi.org/10.1016/j.colsurfb.2015.07.015
38:94–105. 39. Chen J, Wang H, Wu Y, et al., 2022, Biocompatible
https://doi.org/10.1016/j.actbio.2016.04.019 Octacalcium Phosphate/Sodium Alginate/Silk Fibroin
28. Loh QL, Choong C, 2013, Three-Dimensional Scaffolds for Composite Scaffolds for Bone Regeneration. Mater Today
Tissue Engineering Applications: Role of Porosity and Pore Commun, 31:103312.
Size. Tissue Eng Part B Rev, 19:485–502. https://doi.org/10.1016/j.mtcomm.2022.103312
https://doi.org/10.1089/ten.teb.2012.0437 40. Mo C, Holland C, Porter D, et al., 2009, Concentration State
29. Le BQ, Nurcombe V, Cool SM, et al., 2018, The Components Dependence of the Rheological and Structural Properties of
International Journal of Bioprinting (2022)–Volume 8, Issue 4 13