Page 22 - IJB-8-4
P. 22

Silk Fibroin and Calcium Phosphate 3D Scaffolds Promote in vitro Osteogenesis
               Reconstituted Silk. Biomacromolecules, 10:2724–8.   Engineering Applications. Nanomedicine, 8:359–78.
               https://doi.org/10.1021/bm900452u                   https://doi.org/10.2217/nnm.12.118
           41.  Hu  X,  Kaplan  D,  Cebe  P,  2006,  Determining  Beta-sheet   48.  Zhang  Y,  Wu  C,  Friis  T, et al.,  2010,  The  Osteogenic
               Crystallinity  in  Fibrous  Proteins  by  Thermal Analysis  and   Properties  of  CaP/Silk  Composite  Scaffolds.  Biomaterials,
               Infrared Spectroscopy. Macromolecules, 39:6161–70.  31:2848–56.
               https://doi.org/10.1021/ma0610109                   https://doi.org/10.1016/j.biomaterials.2009.12.049
           42.  Horan  RL,  Antle  K,  Collette  AL,  et  al.,  2005,  In  Vitro   49.  Marsh RE, Corey RB, Pauling L, 1955, An Investigation of
               Degradation of Silk Fibroin. Biomaterials, 26:3385–93.  the Structure of Silk Fibroin. Biochim Biophys Acta, 16:1–34.
               https://doi.org/10.1016/j.biomaterials.2004.09.020     https://doi.org/10.1016/0006-3002(55)90178-5
           43.  He GP, Pan XY, Liu X, et al., 2020, HIF-1 Alpha-Mediated   50.  Tamada Y, 2005, New Process to Form a Silk Fibroin Porous
               Mitophagy  Determines  ZnO  Nanoparticle-Induced  Human   3-D Structure. Biomacromolecules, 6:3100–6.
               Osteosarcoma Cell Death both In Vitro and In Vivo. ACS Appl      https://doi.org/.1021/bm050431f
               Mater Interf, 12:48296–309.                     51.  Bertassoni  LE,  Cardoso  JC,  Manoharan  V, et al.,  2014,
               https://doi.org/10.1021/acsami.0c12139              Direct-write Bioprinting of Cell-laden Methacrylated Gelatin
           44.  Mao Z, Bi X, Ye F, et al., 2020, Controlled Cryogelation and   Hydrogels. Biofabrication, 6:024105.
               Catalytic  Cross-Linking  Yields  Highly  Elastic  and  Robust      https://doi.org/10.1088/1758-5082/6/2/024105
               Silk Fibroin Scaffolds. ACS Biomater Sci Eng, 6:4512–22.  52.  Morris ER, Rees DA, Thom D, et al., 1978, Chiroptical and
               https://doi.org/10.1021/acsbiomaterials.0c0075      Stoichiometric Evidence of a Specific, Primary Dimerisation
           45.  Kasoju N, Hawkins N, Pop-Georgievski O, et al., 2016, Silk   Process in Alginate Gelation. Carbohydr Res, 66:145–54.
               Fibroin Gelation via Non-solvent Induced Phase Separation.      https://doi.org/10.1016/S0008-6215(00)83247-4
               Biomater Sci, 4:460–73.                         53.  Ming J, Jiang Z, Wang P, et al., 2015, Silk Fibroin/Sodium
               https://doi.org/10.1039/c5bm00471c                  Alginate  Fibrous  Hydrogels  Regulated  Hydroxyapatite
           46.  Bi X, Li L, Mao Z, et al., 2020, The Effects of Silk Layer-by-layer   Crystal Growth. Mater Sci Eng C Mater Biol Appl, 51:287–93.
               Surface Modification on the Mechanical and Structural Retention      https://doi.org/10.1016/j.msec.2015.03.014
               of Extracellular Matrix Scaffolds. Biomater Sci, 8:4026–38.  54.  Wu  JW,  Liu  MJ,  Wang  L, et  al.,  2020,  Influence  of  Silk
               https://doi.org/10.1039/d0bm00448k                  Fibroin/Sodium Alginate Coatings on the Mineralization of
           47.  Yan LP, Silva-Correia J, Correia C, et al., 2013, Bioactive   Silk Fibroin Fiber Artificial Ligament Prototypes. Text Res J,
               Macro/Micro  Porous  Silk  Fibroin/Nano-Sized  Calcium   90:1590–601.
               Phosphate  Scaffolds  with  Potential  for  Bone-Tissue-     https://doi.org/10.1177/0040517519898156
























                                                               Publisher’s note
                                                               Whioce  Publishing  remains  neutral  with  regard  to
                                                               jurisdictional claims in published maps and institutional
                                                               affiliations.

           14                          International Journal of Bioprinting (2022)–Volume 8, Issue 4
   17   18   19   20   21   22   23   24   25   26   27