Page 37 - IJB-8-4
P. 37

Microsphere-Based Bioink for Large Tissue with Angiogenesis
           5.   Shao L, Gao Q, Xie C, et al., 2020, Sacrificial Microgel-laden   Zwitterionic Microgels as a Versatile Platform for Malleable
               Bioink-enabled 3D Bioprinting of Mesoscale Pore Networks.   Cell  Constructs  and  Injectable  Therapies.  Adv  Mater,
               BioDesign Manuf, 3:30–9.                            30:e1803087.
               https://doi.org/10.1007/s42242-020-00062-y          https://doi.org/10.1002/adma.201870291
           6.   Eilken HM, Adams RH, 2010, Dynamics of Endothelial Cell   17.  Seeto  WJ,  Tian Y,  Winter  RL, et  al.,  2017,  Encapsulation
               Behavior  in  Sprouting Angiogenesis.  Curr Opin  Cell  Biol,   of  Equine  Endothelial  Colony  Forming  Cells  in  Highly
               22:617–25.                                          Uniform,  Injectable  Hydrogel  Microspheres  for  Local  Cell
               https://doi.org/10.1016/j.ceb.2010.08.010           Delivery. Tissue Eng Part C Methods, 23:815–25.
           7.   Eng G, Lee BW, Parsa H, et al., 2013, Assembly of Complex      https://doi.org/10.1089/ten.tec.2017.0233
               Cell  Microenvironments  using  Geometrically  Docked   18.  Xie M, Gao Q, Fu J, et al., 2020, Bioprinting of Novel 3D
               Hydrogel Shapes. Proc Natl Acad Sci, 110:4551–6.    Tumor Array  Chip  for  Drug  Screening.  BioDesign Manuf,
               https://doi.org/10.1073/pnas.1300569110             3:175–88.
           8.   Lee VK,  Kim DY, Ngo H, et al., 2014, Creating Perfused      https://doi.org/10.1007/s42242-020-00078-4
               Functional  Vascular  Channels  using  3D  Bio-printing   19.  Cai S, Shi H, Li G, et al., 2019, 3D-printed Concentration-
               Technology. Biomaterials, 35:8092–102.              controlled Microfluidic Chip with Diffusion Mixing Pattern
               https://doi.org/10.1016/j.biomaterials.2014.05.083  for  the  Synthesis  of  Alginate  Drug  Delivery  Microgels.
           9.   Nakatsu MN, Sainson RC, Aoto JN, et al., 2003, Angiogenic   Nanomaterials (Basel), 9:1451.
               Sprouting  and  Capillary  Lumen  Formation  Modeled  by      https://doi.org/10.3390/nano9101451
               Human Umbilical Vein Endothelial Cells (HUVEC) in Fibrin   20.  Highley  CB,  Song  KH,  Daly  AC, et al.,  2019,  Jammed
               Gels: The Role of Fibroblasts and Angiopoietin-1. Microvasc   Microgel Inks for 3D Printing Applications. Adv Sci (Weinh),
               Res, 66:102–12.                                     6:1801076.
               https://doi.org/10.1016/s0026-2862(03)00045-1       https://doi.org/10.1002/advs.201801076
           10.  Kratochvil MJ, Seymour AJ, Li TL, et al., 2019, Engineered   21.  An C, Liu W, Zhang Y, et al., 2020, Continuous Microfluidic
               Materials for Organoid Systems. Nat Rev Mater, 4:606–22.  Encapsulation  of  Single  Mesenchymal  Stem  Cells
               https://doi.org/10.1038/s41578-019-0129-9           using  Alginate  Microgels  as  Injectable  Fillers  for  Bone
           11.  Daly  AC,  Riley  L,  Segura  T, et al.,  2019,  Hydrogel   Regeneration. Acta Biomater, 111:181–96.
               Microparticles for Biomedical Applications. Nat Rev Mater,      https://doi.org/10.1016/j.actbio.2020.05.024
               5:20–43.                                        22.  Hinton  TJ,  Jallerat  Q,  Palchesko  RN, et al.,  2015,  Three-
               https://doi.org/10.1038/s41578-019-0148-6           dimensional  Printing  of  Complex  Biological  Structures  by
           12.  Parsa S, Gupta M, Loizeau F, et al., 2010, Effects of Surfactant   Freeform  Reversible  Embedding  of  Suspended  Hydrogels.
               and Gentle Agitation on Inkjet Dispensing of Living Cells.   Sci Adv, 1:e1500758.
               Biofabrication, 2:025003.                           https://doi.org/10.1126/sciadv.1500758
               https://doi.org/10.1088/1758-5082/2/2/025003    23.  Jeon  O,  Lee  YB,  Jeong  H, et al.,  2019,  Individual  Cell-
           13.  Caldwell  AS,  Campbell  GT,  Shekiro  KM, et al.,  2017,   only  Bioink  and  Photocurable  Supporting  Medium  for  3D
               Clickable  Microgel  Scaffolds  as  Platforms  for  3D  Cell   Printing and Generation of Engineered Tissues with Complex
               Encapsulation. Adv Healthc Mater, 6:254.            Geometries. Mater Horiz, 6:1625–31.
               https://doi.org/10.1002/adhm.201770080              https://doi.org/10.1039/c9mh00375d
           14.  Leong  W,  Lau  TT,  Wang  DA,  2013, A  Temperature-cured   24.  Khan  MR,  Sadiq  MB,  2020,  Importance  of  Gelatin,
               Dissolvable  Gelatin  Microsphere-based  Cell  Carrier  for   Nanoparticles  and  their  Interactions  in  the  Formulation  of
               Chondrocyte  Delivery  in  a  Hydrogel  Scaffolding  System.   Biodegradable  Composite  Films:  A  Review.  Polym  Bull,
               Acta Biomater, 9:6459–67.                           78:4047-73.
               https://doi.org/10.1016/j.actbio.2012.10.047        https://doi.org/10.1007/s00289-020-03283-4
           15.  Chen  X,  Bai  S,  Li  B, et al.,  2016,  Fabrication  of  Gelatin   25.  Ranasinghe  RA,  Wijesekara  WL,  Perera  PR, et al.,  2022,
               Methacrylate/Nanohydroxyapatite  Microgel  Arrays  for   Functional  and  Bioactive  Properties  of  Gelatin  Extracted
               Periodontal Tissue Regeneration. Int J Nanomed, 11:4707–18.  from Aquatic  Bioresources-a  Review.  Food  Rev  Int,  38,4:
               https://doi.org/10.2147/ijn.s111701                 812-55.
           16.  Sinclair A,  O’Kelly  MB,  Bai  T, et al.,  2018,  Self-healing      https://doi.org/10.1080/87559129.2020.1747486

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 4        29
   32   33   34   35   36   37   38   39   40   41   42