Page 37 - IJB-8-4
P. 37
Microsphere-Based Bioink for Large Tissue with Angiogenesis
5. Shao L, Gao Q, Xie C, et al., 2020, Sacrificial Microgel-laden Zwitterionic Microgels as a Versatile Platform for Malleable
Bioink-enabled 3D Bioprinting of Mesoscale Pore Networks. Cell Constructs and Injectable Therapies. Adv Mater,
BioDesign Manuf, 3:30–9. 30:e1803087.
https://doi.org/10.1007/s42242-020-00062-y https://doi.org/10.1002/adma.201870291
6. Eilken HM, Adams RH, 2010, Dynamics of Endothelial Cell 17. Seeto WJ, Tian Y, Winter RL, et al., 2017, Encapsulation
Behavior in Sprouting Angiogenesis. Curr Opin Cell Biol, of Equine Endothelial Colony Forming Cells in Highly
22:617–25. Uniform, Injectable Hydrogel Microspheres for Local Cell
https://doi.org/10.1016/j.ceb.2010.08.010 Delivery. Tissue Eng Part C Methods, 23:815–25.
7. Eng G, Lee BW, Parsa H, et al., 2013, Assembly of Complex https://doi.org/10.1089/ten.tec.2017.0233
Cell Microenvironments using Geometrically Docked 18. Xie M, Gao Q, Fu J, et al., 2020, Bioprinting of Novel 3D
Hydrogel Shapes. Proc Natl Acad Sci, 110:4551–6. Tumor Array Chip for Drug Screening. BioDesign Manuf,
https://doi.org/10.1073/pnas.1300569110 3:175–88.
8. Lee VK, Kim DY, Ngo H, et al., 2014, Creating Perfused https://doi.org/10.1007/s42242-020-00078-4
Functional Vascular Channels using 3D Bio-printing 19. Cai S, Shi H, Li G, et al., 2019, 3D-printed Concentration-
Technology. Biomaterials, 35:8092–102. controlled Microfluidic Chip with Diffusion Mixing Pattern
https://doi.org/10.1016/j.biomaterials.2014.05.083 for the Synthesis of Alginate Drug Delivery Microgels.
9. Nakatsu MN, Sainson RC, Aoto JN, et al., 2003, Angiogenic Nanomaterials (Basel), 9:1451.
Sprouting and Capillary Lumen Formation Modeled by https://doi.org/10.3390/nano9101451
Human Umbilical Vein Endothelial Cells (HUVEC) in Fibrin 20. Highley CB, Song KH, Daly AC, et al., 2019, Jammed
Gels: The Role of Fibroblasts and Angiopoietin-1. Microvasc Microgel Inks for 3D Printing Applications. Adv Sci (Weinh),
Res, 66:102–12. 6:1801076.
https://doi.org/10.1016/s0026-2862(03)00045-1 https://doi.org/10.1002/advs.201801076
10. Kratochvil MJ, Seymour AJ, Li TL, et al., 2019, Engineered 21. An C, Liu W, Zhang Y, et al., 2020, Continuous Microfluidic
Materials for Organoid Systems. Nat Rev Mater, 4:606–22. Encapsulation of Single Mesenchymal Stem Cells
https://doi.org/10.1038/s41578-019-0129-9 using Alginate Microgels as Injectable Fillers for Bone
11. Daly AC, Riley L, Segura T, et al., 2019, Hydrogel Regeneration. Acta Biomater, 111:181–96.
Microparticles for Biomedical Applications. Nat Rev Mater, https://doi.org/10.1016/j.actbio.2020.05.024
5:20–43. 22. Hinton TJ, Jallerat Q, Palchesko RN, et al., 2015, Three-
https://doi.org/10.1038/s41578-019-0148-6 dimensional Printing of Complex Biological Structures by
12. Parsa S, Gupta M, Loizeau F, et al., 2010, Effects of Surfactant Freeform Reversible Embedding of Suspended Hydrogels.
and Gentle Agitation on Inkjet Dispensing of Living Cells. Sci Adv, 1:e1500758.
Biofabrication, 2:025003. https://doi.org/10.1126/sciadv.1500758
https://doi.org/10.1088/1758-5082/2/2/025003 23. Jeon O, Lee YB, Jeong H, et al., 2019, Individual Cell-
13. Caldwell AS, Campbell GT, Shekiro KM, et al., 2017, only Bioink and Photocurable Supporting Medium for 3D
Clickable Microgel Scaffolds as Platforms for 3D Cell Printing and Generation of Engineered Tissues with Complex
Encapsulation. Adv Healthc Mater, 6:254. Geometries. Mater Horiz, 6:1625–31.
https://doi.org/10.1002/adhm.201770080 https://doi.org/10.1039/c9mh00375d
14. Leong W, Lau TT, Wang DA, 2013, A Temperature-cured 24. Khan MR, Sadiq MB, 2020, Importance of Gelatin,
Dissolvable Gelatin Microsphere-based Cell Carrier for Nanoparticles and their Interactions in the Formulation of
Chondrocyte Delivery in a Hydrogel Scaffolding System. Biodegradable Composite Films: A Review. Polym Bull,
Acta Biomater, 9:6459–67. 78:4047-73.
https://doi.org/10.1016/j.actbio.2012.10.047 https://doi.org/10.1007/s00289-020-03283-4
15. Chen X, Bai S, Li B, et al., 2016, Fabrication of Gelatin 25. Ranasinghe RA, Wijesekara WL, Perera PR, et al., 2022,
Methacrylate/Nanohydroxyapatite Microgel Arrays for Functional and Bioactive Properties of Gelatin Extracted
Periodontal Tissue Regeneration. Int J Nanomed, 11:4707–18. from Aquatic Bioresources-a Review. Food Rev Int, 38,4:
https://doi.org/10.2147/ijn.s111701 812-55.
16. Sinclair A, O’Kelly MB, Bai T, et al., 2018, Self-healing https://doi.org/10.1080/87559129.2020.1747486
International Journal of Bioprinting (2022)–Volume 8, Issue 4 29

