Page 150 - IJB-9-1
P. 150

International Journal of Bioprinting              BNC-reinforced GelMa enhances property of bioprinted cartilage


            16.  Levett PA,  Melchels  FP,  Schrobback  K, et al.,  2014,  A      https://doi.org/10.1163/092050611X581516
               biomimetic extracellular matrix for cartilage tissue   28.  McKenna BA, Mikkelsen D, Wehr JB, et al., 2009,
               engineering centered on photocurable gelatin, hyaluronic   Mechanical and structural properties of native and alkali-
               acid and chondroitin sulfate. Acta Biomater, 10: 214–223.  treated bacterial cellulose produced by  gluconacetobacter
               https://doi.org/10.1016/j.actbio.2013.10.005       xylinus strain ATCC 53524. Cellulose, 16: 1047–1055.
            17.  Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks      https://doi.org/10.1007/s10570-009-9340-y
               for 3D bioprinting: An overview. Biomater Sci, 6: 915–946.
                                                               29.  Athukoralalage SS, Balu R, Dutta NK, et al., 2019, 3D bioprinted
               https://doi.org/10.1039/c7bm00765e                 nanocellulose-based hydrogels for tissue engineering
                                                                  applications: A brief review. Polymers (Basel), 11: 898.
            18.  Huang J, Xiong J, Wang D, et al., 2021, 3D bioprinting of
               hydrogels for cartilage tissue engineering. Gels, 7: 144.     https://doi.org/10.3390/polym11050898
               https://doi.org/10.3390/gels7030144             30.  Singhsa P, Narain R, Manuspiya H, 2017, Bacterial cellulose
                                                                  nanocrystals (BCNC) preparation and characterization
            19.  Kang HW, Lee SJ, Ko IK,  et  al., 2016, A 3D bioprinting
               system to produce human-scale tissue constructs with   from three bacterial cellulose sources and development of
               structural integrity. Nat Biotechnol, 34: 312–319.  functionalized bcncs as nucleic acid delivery systems. ACS
                                                                  Appl Nano Mater, 1:209–221.
               https://doi.org/10.1038/nbt.3413
                                                                  https://doi.org/10.1021/acsanm.7b00105
            20.  Sun Y, You Y, Jiang W, et  al., 2019, 3D-bioprinting a   31.  Duchi S, Onofrillo C, O’Connell CD, et al., 2017, Handheld
               genetically inspired cartilage scaffold with GDF5-conjugated   co-axial bioprinting: application to in situ surgical cartilage
               bmsc-laden hydrogel  and polymer  for  cartilage  repair.   repair. Sci Rep, 7: 5837.
               Theranostics, 9: 6949–6961.
                                                                  https://doi.org/10.1038/s41598-017-05699-x
               https://doi.org/10.7150/thno.38061
                                                               32.  Jia L, Hua Y, Zeng J, et al., 2022, Bioprinting and regeneration
            21.  Matai I, Kaur G, Seyedsalehi A, et al., 2020, Progress in
               3D bioprinting technology for tissue/organ regenerative   of auricular cartilage using a bioactive bioink based on
               engineering. Biomaterials, 226: 119536.            microporous photocrosslinkable acellular cartilage matrix.
                                                                  Bioact Mater, 16: 66–81.
               https://doi.org/10.1016/j.biomaterials.2019.119536
                                                                  https://doi.org/10.1016/j.bioactmat.2022.02.032
            22.  Klotz  BJ, Gawlitta D,  Rosenberg A, et al., 2016,  Gelatin-  33.  Xu Y, Zhou J, Liu C, et al., 2021, Understanding the role of
               methacryloyl hydrogels: Towards biofabrication-based   tissue-specific decellularized spinal cord matrix hydrogel for
               tissue repair. Trends Biotechnol, 34: 394–407.
                                                                  neural stem/progenitor cell microenvironment reconstruction
               https://doi.org/10.1016/j.tibtech.2016.01.002      and spinal cord injury. Biomaterials, 268: 120596.
            23.  Yang R, Chen F, Guo J, et al., 2020, Recent advances in      https://doi.org/10.1016/j.biomaterials.2020.120596
               polymeric biomaterials-based gene delivery for cartilage   34.  Hua Y, Xia H, Jia L, et al., 2021, Ultrafast, tough, and adhesive
               repair. Bioact Mater, 5: 990–1003.
                                                                  hydrogel based on hybrid photocrosslinking for articular
               https://doi.org/doi.org/10.1016/j.bioactmat.2020.06.004  cartilage  repair  in  water-filled  arthroscopy.  Sci Adv,  7:
                                                                  eabg0628.
            24.  Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015,
               Synthesis, properties, and biomedical applications of gelatin      https://doi.org/10.1126/sciadv.abg0628
               methacryloyl (gelma) hydrogels. Biomaterials, 73: 254–271.
                                                               35.  Mendoza L, Batchelor W, Tabor RF, et al., 2018, Gelation
               https://doi.org/10.1016/j.biomaterials.2015.08.045  mechanism of cellulose nanofibre gels: A colloids and
            25.  Bhamare N, Tardalkar K, Parulekar P, et al., 2021, 3D   interfacial perspective. J Colloid Interface Sci, 509: 39–46.
               printing of human ear pinna using cartilage specific ink.      https://doi.org/10.1016/j.jcis.2017.08.101
               Biomed Mater, 16: 055008.
                                                               36.  Fourati Y, Tarres Q, Delgado-Aguilar M, et al., 2021, Cellulose
               https://doi.org/10.1088/1748-605X/ac15b0           nanofibrils reinforced PBAT/TPS blends: Mechanical and
                                                                  rheological properties. Int J Biol Macromol, 183: 267–275.
            26.  Taghipour YD, Hokmabad VR, Del Bakhshayesh AR, et al.,
               2020, The application of hydrogels based on natural polymers      https://doi.org/10.1016/j.ijbiomac.2021.04.102
               for tissue engineering. Curr Med Chem, 27: 2658–2680.
                                                               37.  Fan Y, Yue Z, Lucarelli E, et al., 2020, Hybrid printing using
               https://doi.org/10.2174/0929867326666190711103956  cellulose nanocrystals reinforced GelMA/HAMA hydrogels
                                                                  for improved structural integration. Adv Healthc Mater, 9:
            27.  Pertile RA, Moreira S, Gil da Costa RM, et al., 2012, Bacterial
               cellulose: Long-term biocompatibility studies. J Biomater Sci   e2001410.
               Polym Ed, 23: 1339–1354.                           https://doi.org/10.1002/adhm.202001410


            Volume 9 Issue 1 (2023)                        142                      https://doi.org/10.18063/ijb.v9i1.631
   145   146   147   148   149   150   151   152   153   154   155