Page 150 - IJB-9-1
P. 150
International Journal of Bioprinting BNC-reinforced GelMa enhances property of bioprinted cartilage
16. Levett PA, Melchels FP, Schrobback K, et al., 2014, A https://doi.org/10.1163/092050611X581516
biomimetic extracellular matrix for cartilage tissue 28. McKenna BA, Mikkelsen D, Wehr JB, et al., 2009,
engineering centered on photocurable gelatin, hyaluronic Mechanical and structural properties of native and alkali-
acid and chondroitin sulfate. Acta Biomater, 10: 214–223. treated bacterial cellulose produced by gluconacetobacter
https://doi.org/10.1016/j.actbio.2013.10.005 xylinus strain ATCC 53524. Cellulose, 16: 1047–1055.
17. Gungor-Ozkerim PS, Inci I, Zhang YS, et al., 2018, Bioinks https://doi.org/10.1007/s10570-009-9340-y
for 3D bioprinting: An overview. Biomater Sci, 6: 915–946.
29. Athukoralalage SS, Balu R, Dutta NK, et al., 2019, 3D bioprinted
https://doi.org/10.1039/c7bm00765e nanocellulose-based hydrogels for tissue engineering
applications: A brief review. Polymers (Basel), 11: 898.
18. Huang J, Xiong J, Wang D, et al., 2021, 3D bioprinting of
hydrogels for cartilage tissue engineering. Gels, 7: 144. https://doi.org/10.3390/polym11050898
https://doi.org/10.3390/gels7030144 30. Singhsa P, Narain R, Manuspiya H, 2017, Bacterial cellulose
nanocrystals (BCNC) preparation and characterization
19. Kang HW, Lee SJ, Ko IK, et al., 2016, A 3D bioprinting
system to produce human-scale tissue constructs with from three bacterial cellulose sources and development of
structural integrity. Nat Biotechnol, 34: 312–319. functionalized bcncs as nucleic acid delivery systems. ACS
Appl Nano Mater, 1:209–221.
https://doi.org/10.1038/nbt.3413
https://doi.org/10.1021/acsanm.7b00105
20. Sun Y, You Y, Jiang W, et al., 2019, 3D-bioprinting a 31. Duchi S, Onofrillo C, O’Connell CD, et al., 2017, Handheld
genetically inspired cartilage scaffold with GDF5-conjugated co-axial bioprinting: application to in situ surgical cartilage
bmsc-laden hydrogel and polymer for cartilage repair. repair. Sci Rep, 7: 5837.
Theranostics, 9: 6949–6961.
https://doi.org/10.1038/s41598-017-05699-x
https://doi.org/10.7150/thno.38061
32. Jia L, Hua Y, Zeng J, et al., 2022, Bioprinting and regeneration
21. Matai I, Kaur G, Seyedsalehi A, et al., 2020, Progress in
3D bioprinting technology for tissue/organ regenerative of auricular cartilage using a bioactive bioink based on
engineering. Biomaterials, 226: 119536. microporous photocrosslinkable acellular cartilage matrix.
Bioact Mater, 16: 66–81.
https://doi.org/10.1016/j.biomaterials.2019.119536
https://doi.org/10.1016/j.bioactmat.2022.02.032
22. Klotz BJ, Gawlitta D, Rosenberg A, et al., 2016, Gelatin- 33. Xu Y, Zhou J, Liu C, et al., 2021, Understanding the role of
methacryloyl hydrogels: Towards biofabrication-based tissue-specific decellularized spinal cord matrix hydrogel for
tissue repair. Trends Biotechnol, 34: 394–407.
neural stem/progenitor cell microenvironment reconstruction
https://doi.org/10.1016/j.tibtech.2016.01.002 and spinal cord injury. Biomaterials, 268: 120596.
23. Yang R, Chen F, Guo J, et al., 2020, Recent advances in https://doi.org/10.1016/j.biomaterials.2020.120596
polymeric biomaterials-based gene delivery for cartilage 34. Hua Y, Xia H, Jia L, et al., 2021, Ultrafast, tough, and adhesive
repair. Bioact Mater, 5: 990–1003.
hydrogel based on hybrid photocrosslinking for articular
https://doi.org/doi.org/10.1016/j.bioactmat.2020.06.004 cartilage repair in water-filled arthroscopy. Sci Adv, 7:
eabg0628.
24. Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015,
Synthesis, properties, and biomedical applications of gelatin https://doi.org/10.1126/sciadv.abg0628
methacryloyl (gelma) hydrogels. Biomaterials, 73: 254–271.
35. Mendoza L, Batchelor W, Tabor RF, et al., 2018, Gelation
https://doi.org/10.1016/j.biomaterials.2015.08.045 mechanism of cellulose nanofibre gels: A colloids and
25. Bhamare N, Tardalkar K, Parulekar P, et al., 2021, 3D interfacial perspective. J Colloid Interface Sci, 509: 39–46.
printing of human ear pinna using cartilage specific ink. https://doi.org/10.1016/j.jcis.2017.08.101
Biomed Mater, 16: 055008.
36. Fourati Y, Tarres Q, Delgado-Aguilar M, et al., 2021, Cellulose
https://doi.org/10.1088/1748-605X/ac15b0 nanofibrils reinforced PBAT/TPS blends: Mechanical and
rheological properties. Int J Biol Macromol, 183: 267–275.
26. Taghipour YD, Hokmabad VR, Del Bakhshayesh AR, et al.,
2020, The application of hydrogels based on natural polymers https://doi.org/10.1016/j.ijbiomac.2021.04.102
for tissue engineering. Curr Med Chem, 27: 2658–2680.
37. Fan Y, Yue Z, Lucarelli E, et al., 2020, Hybrid printing using
https://doi.org/10.2174/0929867326666190711103956 cellulose nanocrystals reinforced GelMA/HAMA hydrogels
for improved structural integration. Adv Healthc Mater, 9:
27. Pertile RA, Moreira S, Gil da Costa RM, et al., 2012, Bacterial
cellulose: Long-term biocompatibility studies. J Biomater Sci e2001410.
Polym Ed, 23: 1339–1354. https://doi.org/10.1002/adhm.202001410
Volume 9 Issue 1 (2023) 142 https://doi.org/10.18063/ijb.v9i1.631

