Page 281 - IJB-9-1
P. 281
International Journal of Bioprinting Evaluation of advanced visual computing solutions for the left atrial appendage occlusion
J Am Soc Echocardiogr, 33: 1316–1323. https://doi.org/10.1016/j.tcm.2019.04.005
https://doi.org/10.1016/j.echo.2020.08.005 23. Nam HH, Herz C, Lasso A, et al., 2020, Simulation of
transcatheter atrial and ventricular septal defect device
12. Aguado AM, Olivares AL, Yagüe C, et al., 2019, In silico closure within three-dimensional echocardiography-
optimization of left atrial appendage occluder implantation derived heart models on screen and in virtual reality. J Am
using interactive and modeling Tools. Front Physiol, 10: 237.
Soc Echocardiogr, 33: 641–644.e2.
https://doi.org/10.3389/fphys.2019.00237
https://doi.org/10.1016/j.echo.2020.01.011
13. Vukicevic M, Mosadegh B, Min JK, et al., 2017, Cardiac 3D
printing and its future directions. JACC Cardiovasc Imaging, 24. Narang A, Hitschrich N, Mor-Avi V, et al., 2020, Virtual
10: 171–184. reality analysis of three-dimensional echocardiographic
and cardiac computed tomographic data sets. J Am Soc
https://doi.org/10.1016/j.jcmg.2016.12.001 Echocardiogr, 33: 1306–1315.
14. Forte MNV, Hussain T, Roest A, et al., 2019, Living the heart https://doi.org/10.1016/j.echo.2020.06.018
in three dimensions: applications of 3D printing in CHD. 25. Sanon S, Lim DS, 2019, Update on left atrial appendage
Cardiol Young, 29: 733–743.
occlusion an overview of innovative preprocedural and
https://doi.org/10.1017/S1047951119000398 intraprocedural imaging techniques, trial data, and current
15. Fan Y, Yang F, Cheung GSH, et al., 2019, Device sizing guided laao devices and devices in development. Struct Heart Dis,
by echocardiography-based three-dimensional printing 13: 35–41
is associated with superior outcome after percutaneous 26. Lindner S, Behnes M, Wenke A, et al., 2019, Assessment of
left atrial appendage occlusion. J Am Soc Echocardiogr, peri-device leaks after interventional left atrial appendage
32: 708–719.e1. closure using standardized imaging by cardiac computed
tomography angiography. Int J Cardiovasc Imaging,
https://doi.org/10.1016/j.echo.2019.02.003
35: 725–731.
16. Wang DD, Gheewala N, Shah R, et al., 2018, Three-
dimensional printing for planning of structural heart https://doi.org/10.1007/s10554-018-1493-z
interventions. Interv Cardiol Clin, 7: 415–423. 27. Medina E, Aguado AM, Mill J, et al., 2020, VRIDAA: Virtual
reality platform for training and planning implantations
https://doi.org/10.1016/j.iccl.2018.04.004
of occluder devices in left atrial appendages. Eurographics
17. Eng MH, Wang DD, 2018, Computed tomography for left Work Vis Comput Biol Med, 31–35.
atrial appendage occlusion case planning. Interv Cardiol
Clin, 7: 367–378. https://doi.org/10.2312/vcbm.20201168
28. Ribeiro JM, Astudillo P, de Backer O, et al., 2022, Artificial
https://doi.org/10.1016/j.iccl.2018.03.003
intelligence and transcatheter interventions for structural
18. Kim WD, Cho I, Kim YD, et al., 2022., Improving left atrial heart disease: A glance at the (near) future, Trends Cardiovasc
appendage occlusion device size determination by three- Med, 32:153-159.
dimensional printing-based preprocedural simulation. https://doi.org/10.1016/j.tcm.2021.02.002
Front Cardiovasc Med, 9: 830062.
29. Corral-Acero J, Margara F, Marciniak M, et al., 2020, The
https://doi.org/10.3389/fcvm.2022.830062
“Digital Twin” to enable the vision of precision cardiology.
19. Conti M, Marconi S, Muscogiuri G, et al., 2019, Left atrial Eur Heart J, 41: 4556–4564.
appendage closure guided by 3d computed tomography
printing technology: a case control study. J Cardiovasc https://doi.org/10.1093/eurheartj/ehaa159
Comput Tomogr, 13: 336–339. 30. Garot P, Iriart X, Aminian A, et al., 2020, Value of feops
heartguide patient-specific computational simulations in the
https://doi.org/10.1016/j.jcct.2018.10.024
planning of left atrial appendage closure with the amplatzer
20. Mendez A, Hussain T, Hosseinpour AR, et al., 2019, Virtual amulet closure device: Rationale and design of the predict-
reality for preoperative planning in large ventricular septal laa study. Open Hear, 7: e001326.
defects. Eur Heart J, 40: 1092.
https://doi.org/10.1136/openhrt-2020-001326
https://doi.org/10.1093/eurheartj/ehy685
31. Naci H, Salcher-Konrad M, Mcguire A, et al., 2019, Impact
21. Tandon A, Burkhardt BEU, Batsis M, et al., 2019, Sinus of predictive medicine on therapeutic decision making:
venosus defects. JACC Cardiovasc Imaging, 12: 921–924. A randomized controlled trial in congenital heart disease.
NPJ Digit Med, 2: 17.
https://doi.org/10.1016/j.jcmg.2018.10.013
https://doi.org/10.1038/s41746-019-0085-1
22. Southworth MK, Silva JR, Silva JN, 2020, Use of extended
realities in cardiology. Trends Cardiovasc Med, 30: 143–148. 32. Otani T, Al-Issa A, Pourmorteza A, et al., 2016, A
Volume 9 Issue 1 (2023) 273 https://doi.org/10.18063/ijb.v9i1.640

