Page 282 - IJB-9-1
P. 282

International Journal of Bioprinting  Evaluation of advanced visual computing solutions for the left atrial appendage occlusion


               computational framework for personalized blood flow   278–285.
               analysis in the human left atrium.  Ann Biomed Eng, 44:      https://doi.org/10.24875/RECICE.M21000224
               3284–3294.
                                                               38.  Brooke J, 1996, SUS-A quick and dirty usability scale. In:
               https://doi.org/10.1007/s10439-016-1590-x
                                                                  Usability Evaluation in Industry. Vol. 189, Boca Raton,
            33.  Fanni BM, Capellini K, Di Leonardo M,  et al., 2020,   Florida: CRC Press, p4–7.
               Correlation between laa morphological features and
               computational fluid dynamics analysis for non-valvular   39.  Mill J, Agudelo V, Olivares AL, et al., 2021, Sensitivity analysis
               atrial fibrillation patients. Appl Sci, 10: 1448.  of in silico fluid simulations to predict thrombus formation
                                                                  after left atrial appendage occlusion. Mathematics, 9: 2304.
               https://doi.org/10.3390/app10041448
                                                                  https://doi.org/10.3390/math9182304
            34.  Pons MI, Mill J, Fernandez-Quilez A, et al., 2022, Joint analysis
               of morphological parameters and in silico haemodynamics of   40.  Bangor A, Kortum P, Miller J, 2009, Determining what
               the left atrial appendage for thrombogenic risk assessment.   individual sus scores mean; Adding an adjective rating.
               J Interv Cardiol, 2022: 9125224.                   J Usability Stud, 4: 114–123.
               https://doi.org/10.1155/2022/9125224            41.  Viceconti M, Pappalardo F, Rodriguez B, et al., 2021, In silico
                                                                  trials: Verification, validation and uncertainty quantification
            35.  Feng L, Gao H, Griffith B, et al., 2019, Analysis of a coupled   of  predictive  models  used  in the  regulatory evaluation  of
               fluid-structure interaction model of the left atrium and   biomedical products. Methods, 185: 120–127.
               mitral valve. Int J Numer Method Biomed Eng, 35: e3254.
                                                                  https://doi.org/10.1016/j.ymeth.2020.01.011
               https://doi.org/10.1002/cnm.3254
                                                               42.  Zaccaria A, Danielli F, Gasparotti E, et al., 2020, Left atrial
            36.  Mill J, Olivares AL, Arzamendi D,  et  al., 2020, Impact of   appendage occlusion device: development and validation of
               flow-dynamics on device related thrombosis after left atrial   a finite element model. Med Eng Phys, 82: 104–108.
               appendage occlusion. Can J Cardiol, 36: 968.e13–968.e14.
                                                                  https://doi.org/10.1016/j.medengphy.2020.05.019
               https://doi.org/10.1016/j.cjca.2019.12.036
                                                               43.  Celi S, Gasparotti E, Capellini K, et al., 2021, 3D printing in
            37.  Mill J, Agudelo V, Li CH, et al., 2021, Patient-specific flow
               simulation analysis to predict device-related thrombosis   modern cardiology. Curr Pharm Des, 27: 1918–1930.
               in left atrial appendage occluders. REC Interv Cardiol, 3:   https://doi.org/10.2174/1381612826666200622132440








































            Volume 9 Issue 1 (2023)                        274                      https://doi.org/10.18063/ijb.v9i1.640
   277   278   279   280   281   282   283   284   285   286   287