Page 358 - IJB-9-1
P. 358
International Journal of Bioprinting High-performance electrospun PVDF/AgNP/Mxene fiber
33. Chen J-J, Li Y, Zheng X-M, et al., 2018, Enhancement in electrospinning method with closed-loop motor control.
electroactive crystalline phase and dielectric performance of Sens Mater, 29: 497–509.
novel PEG-graphene/PVDF composites. Appl Surf Sci, 448: http://dx.doi.org/10.18494/SAM.2017.1532
320–330.
44. Pan C-T, Yen C-K, Wang S-Y, et al., 2015, Near-field
https://doi.org/10.1016/j.apsusc.2018.04.144
electrospinning enhances the energy harvesting of hollow
34. Fan FR, Tang Wand Wang ZL, 2016, Flexible nanogenerators PVDF piezoelectric fibers. RSC Adv, 5(103): 85073–85081.
for energy harvesting and self‐powered electronics. Adv https://doi.org/10.1039/C5RA16604G
Mater, 28(22): 4283–4305.
45. Pan C-T, Yen C-K, Wu H-C, et al., 2015, Significant
https://doi.org/10.1002/adma.201504299
piezoelectric and energy harvesting enhancement of poly
35. Tang C-W, Li B, Sun L, et al., 2012, The effects of nanofillers, (vinylidene fluoride)/polypeptide fiber composites prepared
stretching and recrystallization on microstructure, through near-field electrospinning. J Mater Chem A, 3(13):
phase transformation and dielectric properties in PVDF 6835–6843.
nanocomposites. Eur Polym J, 48(6): 1062–1072. https://doi.org/10.1039/C5TA00147A
https://doi.org/10.1016/j.eurpolymj.2012.04.002
46. Pan C-T, Yen C-K, Wang S-Y, et al., 2018, Energy harvester
36. Arshad AN, Wahid MHM, Rusop M, et al., 2019, Dielectric and cell proliferation from biocompatible PMLG nanofibers
and structural properties of poly (vinylidene fluoride) prepared using near-field electrospinning and electrospray
(PVDF) and poly (vinylidene fluoride-trifluoroethylene) technology. J Nanosci Nanotechnol, 18(1): 156–164.
(PVDF-TrFE) filled with magnesium oxide nanofillers. https://doi.org/10.1166/jnn.2018.14596
J Nanomater, 2019.
47. Takamatsu S, Takahata T, Muraki M, et al., 2010, Transparent
https://doi.org/10.1155/2019/5961563
conductive-polymer strain sensors for touch input sheets of
37. Jin Y, Xia Nand Gerhardt RA, 2016, Enhanced dielectric flexible displays. J MicromechMicroeng, 20(7): 075017.
properties of polymer matrix composites with BaTiO3 and http://dx.doi.org/10.1088/0960-1317/20/7/075017
MWCNT hybrid fillers using simple phase separation. Nano
Energy, 30: 407–416. 48. Zou J, Yip H-L, Hau SK, et al., 2010, Metal grid/conducting
polymer hybrid transparent electrode for inverted polymer
https://doi.org/10.1016/j.nanoen.2016.10.033
solar cells. Appl phys lett, 96(20): 96.
38. Lu L, Ding W, Liu J, et al., 2020, Flexible PVDF based https://doi.org/10.1063/1.3394679
piezoelectric nanogenerators. Nano Energy, 78: 105251.
49. Emmott CJM, Urbina Aand Nelson J, 2012, Environmental
https://doi.org/10.1016/j.nanoen.2020.105251
and economic assessment of ITO-free electrodes for organic
39. Teo W Eand Ramakrishna S, 2006, A review on electrospinning solar cells. Sol Energy Mater Sol Cells, 97: 14–21.
design and nanofibre assemblies. Nanotechnology, 17(14): https://doi.org/10.1016/j.solmat.2011.09.024
R89.
50. Wu C Mand Chou MH, 2016, Polymorphism, piezoelectricity
http://dx.doi.org/10.1088/0957-4484/17/14/R01
and sound absorption of electrospun PVDF membranes
40. Liu ZH, Pan CT, Lin LW, et al., 2013, Direct-write PVDF with and without carbon nanotubes. Compos scitechnol, 127:
nonwoven fiber fabric energy harvesters via the hollow 127–133.
cylindrical near-field electrospinning process. Smart Mater https://doi.org/10.1016/j.compscitech.2016.03.001
Struct, 23(2): 025003.
51. Sun J-G, Yang T-N, Wang C-Y, et al., 2018, A flexible
http://dx.doi.org/10.1088/0964-1726/23/2/025003
transparent one-structure tribo-piezo-pyroelectric hybrid
41. Liu ZH, Pan CT, Lin LW, et al., 2013, Piezoelectric energy generator based on bio-inspired silver nanowires
properties of PVDF/MWCNT nanofiber using near-field network for biomechanical energy harvesting and
electrospinning. Sens Actuators A: Phys, 193: 13–24. physiological monitoring. Nano Energy, 48: 383–390.
https://doi.org/10.1016/j.sna.2013.01.007 https://doi.org/10.1016/j.nanoen.2018.03.071
42. Zaarour B, Zhu L, Huang C, et al., 2018, Fabrication of a 52. Pusty M, Sinha Land Shirage PM, 2019, A flexible self-poled
polyvinylidene fluoride cactus-like nanofiber through one- piezoelectric nanogenerator based on a rGO–Ag/PVDF
step electrospinning. RSC Adv, 8(74): 42353–42360. nanocomposite. New J Chem, 43(1): 284–294.
https://doi.org/10.1039/C8RA09257E https://doi.org/10.1039/C8NJ04751K
43. Pan C-T, Tsai K-C, Wang S-Y, et al., 2017, Development 53. Abolhasani MM, Shirvanimoghaddam Kand Naebe M,
of piezoelectric fibers in smart patch by near-field 2017, PVDF/graphene composite nanofibers with enhanced
Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)
V 350 https://doi.org/10.18063/ijb.v9i1.647

