Page 360 - IJB-9-1
P. 360

International Journal of Bioprinting                      High-performance electrospun PVDF/AgNP/Mxene fiber



            72.  Cai Y, Shen J, Ge G, et al., 2018, Stretchable Ti3C2T x   82.  Zhao Q, Yang L, Ma Y, et al., 2021, Highly sensitive, reliable
               MXene/carbon nanotube composite based strain sensor   and flexible pressure sensor based on piezoelectric PVDF
               with ultrahigh sensitivity and tunable sensing range.   hybrid film using MXene nanosheet reinforcement. J Alloys
               ACS Nano, 12(1): 56–62.                            Compd, 886: 161069.
               https://doi.org/10.1021/acsnano.7b06251            https://doi.org/10.1016/j.jallcom.2021.161069
            73.  Mirkhani SA, Shayesteh Zeraati A, Aliabadian E, et al.,   83.  Wang S, Shao H-Q, Liu Y, et al., 2021, Boosting piezoelectric
               2019, High dielectric constant and low dielectric loss via   response of PVDF-TrFE via MXene for self-powered linear
               poly (vinyl alcohol)/Ti3C2T x MXene nanocomposites. ACS   pressure sensor. Compos Sci Technol, 202: 108600.
               Appl Mater Interfaces, 11(20): 18599–18608.
                                                                  https://doi.org/10.1016/j.compscitech.2020.108600
               https://doi.org/10.1021/acsami.9b00393
                                                               84.  Fan X, Ding Y, Liu Y, et al., 2019, Plasmonic Ti3C2T x
            74.  Xia Y, Mathis TS, Zhao M-Q, et al., 2018, Thickness-  MXene enables highly efficient photothermal conversion for
               independent capacitance of vertically aligned liquid-  healable and transparent wearable device. ACS nano, 13(7):
               crystalline MXenes. Nature, 557(7705): 409–412.    8124–8134.
               https://doi.org/10.1038/s41586-018-0109-z          https://doi.org/10.1021/acsnano.9b03161
            75.  Ran J, Gao G, Li F-T, et al., 2017, Ti3C2 MXene co-catalyst   85.  Zhai W, Wang C, Wang S, et al., 2021, Ultra-stretchable
               on metal sulfide photo-absorbers for enhanced visible-  and  multifunctional  wearable  electronics  for  superior
               light photocatalytic hydrogen production.  Nat commun,   electromagnetic interference shielding, electrical therapy and
               8(1): 1–10.                                        biomotion monitoring. J Mater Chem A, 9(11): 7238–7247.
               https://doi.org/10.1038/ncomms13907                https://doi.org/10.1039/D0TA10991F
            76.  Liu LX, Chen W, Zhang HB, et al., 2019, Flexible and   86.  Saidi A, Gauvin C, Ladhari S, et al., 2021, Advanced
               multifunctional silk textiles with biomimetic leaf‐like   functional materials for intelligent thermoregulation in
               MXene/silver nanowire nanostructures for electromagnetic   personal protective equipment. Polymers, 13(21): 3711.
               interference shielding, humidity monitoring, and self‐
               derived hydrophobicity. Adv Funct Mater, 29(44): 1905197.   https://doi.org/10.3390/polym13213711
                                                               87.  Rana SMS, Rahman MT, Salauddin M, et al., 2021,
               https://doi.org/10.1002/adfm.201905197
                                                                  Electrospun PVDF-TrFE/MXene nanofiber mat-based
            77.  Zhao X, Wang L-Y, Tang C-Y, et al., 2020, Smart Ti3C2T x   triboelectric nanogenerator for smart home appliances. ACS
               MXene fabric with fast humidity response and joule heating   Appl Mater Interfaces, 13(4): 4955–4967.
               for healthcare and medical therapy applications. ACS Nano,
               14(7): 8793–8805.                                  https://doi.org/10.1021/acsami.0c17512
               https://doi.org/10.1021/acsnano.0c03391         88.  Kim J, Jang M, Jeong G, et al., 2021, MXene-enhanced
                                                                  β-phase crystallization in ferroelectric porous composites
            78.  Yue Y, Liu N, Liu W, et al., 2018, 3D hybrid porous Mxene-  for highly-sensitive dynamic force sensors. Nano Energy, 89:
               sponge network and its application in piezoresistive sensor.   106409.
               Nano Energy, 50: 79–87.
                                                                  https://doi.org/10.1016/j.nanoen.2021.106409
               https://doi.org/10.1016/j.nanoen.2018.05.020
                                                               89.  Pan C-T, Dutt K, Yen C-K,  et al., 2022, Characterization
            79.  Feng Y, Deng Q, Peng C, et al., 2018, An ultrahigh discharged   of piezoelectric properties of Ag-NPs doped PVDF
               energy density achieved in an inhomogeneous PVDF   nanocomposite fibres membrane prepared by near field
               dielectric composite filled with 2D MXene nanosheets via   electrospinning. Comb Chem High Throughput Screen, 25(4):
               interface engineering. J Mater Chem C, 6(48): 13283–13292.   720–729.
               https://doi.org/10.1039/C8TC05180A                 https://doi.org/10.2174/1386207324666210302100728
            80.  Feng Y, Deng Q, Peng C, et al., 2019, High dielectric and   90.  Yen C-K, Dutt K, Yao Y-S, et al., 2022, Development of flexible
               breakdown properties achieved in ternary BaTiO3/MXene/  biceps tremors sensing chip of PVDF fibers with nano-silver
               PVDF nanocomposites with low-concentration fillers   particles by near-field electrospinning. Polymers, 14(2): 331.
               from enhanced interface polarization.  Ceram  Int, 45(6):
               7923–7930.                                         https://doi.org/10.3390/polym14020331
               https://doi.org/10.1016/j.ceramint.2019.01.104  91.  Chen  W-w,  An  Z-l,  He  L-b, et al.,  2015,  Piezoelectric
                                                                  coefficients measurement for PVDF films with pneumatic
            81.  Tu S, Jiang Q, Zhang X, et al., 2018, Large dielectric constant   pressure  rig  in a  sole cavity.  In 2015 Symposium on
               enhancement in MXene percolative polymer composites.   Piezoelectricity, Acoustic Waves, and Device Applications
               ACS nano, 12(4): 3369–3377.                        (SPAWDA), IEEE, 111–114.
               https://doi.org/10.1021/acsnano.7b08895            https://doi.org/10.1109/SPAWDA.2015.7364452


            Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)
            V                                              352                      https://doi.org/10.18063/ijb.v9i1.647
   355   356   357   358   359   360   361   362   363   364   365