Page 357 - IJB-9-1
P. 357

International Journal of Bioprinting                      High-performance electrospun PVDF/AgNP/Mxene fiber



            11.  Zeng X, Deng H-T, Wen D-L, et al., 2022, Wearable   22.  Cui C, Xue F, Hu W-J, et al., 2018, Two-dimensional
               multi-functional sensing technology for healthcare smart   materials with piezoelectric and ferroelectric functionalities.
               detection. Micromachines, 13(2): 254.              NPJ 2D MaterApp, 2(1): 1–14.
               https://doi.org/10.3390/mi13020254                 https://doi.org/10.1038/s41699-018-0063-5
            12.  Lo L-W, Zhao J, Wan H, et al., 2022, A Soft sponge sensor for   23.  Kapat K, Shubhra QTH, Zhou M, et al., 2020, Piezoelectric
               multimodal sensing and distinguishing of pressure, strain, and   nano‐biomaterials for biomedicine and tissue regeneration.
               temperature. ACS Appl Mater Interfaces, 14(7): 9570–9578.   Adv Funct Mater, 30(44): 1909045.
               https://doi.org/10.1021/acsami.1c21003             https://doi.org/10.1002/adfm.201909045
            13.  Dong  K,  Wu  Z,  Deng  J, et al.,  2018,  A  stretchable  yarn   24.  Bowen CR, Kim H A, Weaver P M, et al., 2014, Piezoelectric
               embedded  triboelectric  nanogenerator  as  electronic  skin   and  ferroelectric  materials  and  structures  for  energy
               for biomechanical energy harvesting and multifunctional   harvesting applications. Energy Environ Sci, 7(1): 25–44.
               pressure sensing. Adv Mater, 30(43): 1804944.
                                                                  https://doi.org/10.1039/C3EE42454E
               https://doi.org/10.1002/adma.201804944
                                                               25.  Mias, S., & Camon, H. (2008).A review of active optical
            14.  Zhu M, Chng SS, Cai W, et al., 2020, Piezoelectric polymer   devices: II. Phase modulation. Journal of Micromechanics
               nanofibers for pressure sensors and their applications in   and Microengineering, 18(8), 083002.
               human activity monitoring. RSC Adv, 10(37): 21887–21894.
                                                                  http://dx.doi.org/10.1088/0960-1317/18/8/083002
               https://doi.org/10.1039/D0RA03293J
                                                               26.  Tichý J, Erhart J, Kittinger E, et al., 2010,  Fundamentals
            15.  Hou X, Zhang S, Yu J, et al., 2020, Flexible piezoelectric   of piezoelectric sensorics: mechanical, dielectric, and
               nanofibers/polydimethylsiloxane‐based pressure sensor for   thermodynamical  properties  of piezoelectric  materials.
               self‐powered  human  motion  monitoring.  Energy Technol,   Springer Science & Business Media, London.
               8(3): 1901242.
                                                                  https://doi.org/10.1007/978-3-540-68427-5
               https://doi.org/10.1002/ente.201901242
                                                               27.  Garcia-Sanchez F, Sáez Aand Dominguez J, 2005,
            16.  Stadlober B, Zirkl Mand Irimia-Vladu M, 2019, Route towards   Anisotropic and piezoelectric materials fracture analysis by
               sustainable  smart sensors: ferroelectric polyvinylidene   BEM. Comput Struct, 83(10-11): 804–820.
               fluoride-based  materials  and  their  integration  in  flexible
               electronics. Chem Soc Rev, 48(6): 1787–1825.       https://doi.org/10.1016/j.compstruc.2004.09.010
                                                               28.  Kumar D, Chaturvedi Pand Jejurikar N, 2014, Piezoelectric
               https://doi.org/10.1039/C8CS00928G
                                                                  energy harvester design and power conditioning.  In 2014
            17.  Ribeiro C, Sencadas V, Correia DM, et al., 2015, Piezoelectric   IEEE  Students’  Conference  on  Electrical,  Electronics  and
               polymers as biomaterials for tissue engineering applications.   Computer Science, IEEE, 1–6.
               Colloids Surf B, 136: 46–55.
                                                                  https://doi.org/10.1109/SCEECS.2014.6804491
               https://doi.org/10.1016/j.colsurfb.2015.08.043
                                                               29.  Liu Z, Li S, Zhu J, et al., 2022, Fabrication of
            18.  Yu G-F, Yan X, Yu M, et al., 2016, Patterned, highly   β-phase-enriched  PVDF  sheets  for  self-powered
               stretchable and conductive nanofibrous PANI/PVDF strain   piezoelectric sensing.  ACS  ApplMater  Interfaces, 14(9):
               sensors based on electrospinning and in situ polymerization.   11854–11863.
               Nanoscale, 8(5): 2944–2950.
                                                                  https://doi.org/10.1021/acsami.2c01611
               https://doi.org/10.1039/C5NR08618C
                                                               30.  Li J, Zhou G, Hong Y, et al., 2022, Highly sensitive, flexible
            19.  Zhou H, Zhang Y, Qiu Y, et al., 2020, Stretchable piezoelectric   and wearable piezoelectric motion sensor based on PT
               energy harvesters and self-powered sensors for wearable and   promoted β-phase PVDF.  Sens  Actuator  A  Phys, 337:
               implantable devices. Biosens, 168: 112569.         113415.
               https://doi.org/10.1016/j.bios.2020.112569         https://doi.org/10.1016/j.sna.2022.113415
            20.  Chorsi MT, Curry E J, Chorsi HT, et al., 2019, Piezoelectric   31.  Katsouras I, Asadi K, Li M, et al., 2016, The negative
               biomaterials for sensors and actuators.  Adv Mater, 31(1):   piezoelectric effect of the ferroelectric polymer poly
               1802084.                                           (vinylidene fluoride). Nat mater, 15(1): 78–84.
               https://doi.org/10.1002/adma.201802084             http://dx.doi.org/10.1038/nmat4423
            21.  Safari Aand Akdogan E K, (eds) 2008,  Piezoelectric and   32.  Auliya RZ, Ooi PC, Sadri R,  et  al., 2021, Exploration of
               acoustic materials for transducer applications. Springer   2D Ti3C2 MXene for all solution processed piezoelectric
               Science & Business Media, New York.                nanogenerator applications. Sci Rep, 11(1): 1–13.
               https://doi.org/10.1007/978-0-387-76540-2          https://doi.org/10.1038/s41598-021-96909-0


            V
            Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)  349                      https://doi.org/10.18063/ijb.v9i1.647
   352   353   354   355   356   357   358   359   360   361   362