Page 182 - IJB-9-2
P. 182

International Journal of Bioprinting                          3D Printing Multifunctional Orthopedic Biocoatings


            47.  Li W, Mille LS, Robledo JA, et al., 2020, Recent advances   Development of a quantitative vancomycin immunoassay
               in formulating and processing biomaterial inks for vat   for the Abbott AxSYM analyzer. Ther Drug Monit, 19: 571.
               polymerization-based 3D printing.  Adv Healthc Mater,      https://doi.org/10.1097/00007691-199710000-00106
               9: 2000156.
                                                               59.  Lawson MC, Bowman CN, Anseth KS, 2007, Vancomycin
               https://doi.org/10.1002/ADHM.202000156             derivative photopolymerized to titanium kills S. epidermidis.
            48.  Cooley P, Wallace D, Antohe B, 2016, Applicatons of ink-jet   Clin Orthop Rel Res, 461: 96–105.
               printing technology to BioMEMS and microfluidic systems.      https://doi.org/10.1097/BLO.0B013E3180986706
               J Assoc Lab Auto, 7: 33–39.
                                                               60.  Monzón M, Oteiza C, Leiva J, et al., 2001, Synergy of different
               https://doi./org/10.1016/S1535-5535-04-00214-X     antibiotic combinations in biofilms of  Staphylococcus
            49.  Fuller SB, Wilhelm EJ, Jacobson JM, 2002, Ink-jet   epidermidis. J Antimicrob Chemother, 48: 793–801.
               printed  nanoparticle  microelectromechanical  systems.      https://doi.org/10.1093/JAC/48.6.793
               J Microelectromech Syst, 11: 54–60.
                                                               61.  Xie Z, Liu X, Jia W, et al., 2009, Treatment of osteomyelitis
            50.  Hebner TR, Wu CC, Marcy D, et al., 2022, Ink-jet Printing   and repair of bone defect by degradable bioactive borate
               of Doped Polymers for Organic Light Emitting Devices.   glass releasing vancomycin. J Control Rel, 139: 118–126.
               Available from: https://www.ojps.aip.org/aplo/aplcr.jsp [Last
               accessed on 2022 Mar 27].                          https://doi.org/10.1016/J.JCONREL.2009.06.012
                                                               62.  Headquarters, AST, 1976, Adhesion Measurement of Thin
            51.  Wallace D, 2005, Ink-jet Printing as a Tool in Manufacturing
               and Instrumentation. Nanolithography and Patterning   Films, Thick Fi Lms, an D Bulk Coatings. Vol. 2. PA: Astm
               Techniques in Microelectronics. Netherlands: Elsevier. p.267.  Special Technical Publication. p. 4.
                                                               63.  ASTM International, 2017, ASTM D3359-17 Standard Test
            52.  Perkins J, Hong Y, Ye SH, et al., 2014, Direct writing of bio-  Methods for Rating Adhesion by Tape Test. United States:
               functional coatings for cardiovascular applications. J Biomed   ASTM International. pp.1–9.
               Mater Res Part A, 102: 4290–4300.
                                                               64.  Page B, Page M, Noel C, 1993, A new fluorometric assay for
               https://doi.org/10.1002/JBM.A.35105
                                                                  cytotoxicity measurements in vitro. Int J Oncol, 3: 473–476.
            53.  Perkins J, Xu Z, Smith C,  et al., 2015, Direct writing of      https://doi.org/10.3892/IJO.3.3.473
               polymeric coatings on magnesium alloy for tracheal stent
               applications. Ann Biomed Eng, 43: 1158–1165.    65.  Adams CS, Antoci Jr V, Harrison G, et al., 2009, Controlled
                                                                  release of vancomycin from thin sol‐gel films on implant
               https://doi.org/10.1007/S10439-014-1169-3/figures/6  surfaces successfully controls osteomyelitis.  J Orthop Res,
            54.  Kazemzadeh-Narbat M, Noordin S, Masri BA, et al., 2012,   27: 701–709.
               Drug release and bone growth studies of antimicrobial   66.  Li B, Brown KV, Wenke JC, et al., 2010, Sustained release of
               peptide-loaded calcium phosphate coating on titanium.   vancomycin from polyurethane scaffolds inhibits infection
               J Biomed Mater Res Part B Appl Biomater, 100B: 1344–1352.   of bone wounds in a rat femoral segmental defect model.
               https://doi.org/10.1002/JBM.B.32701                J Control Release, 145: 221–230.
            55.  Le Ray AM, Chiffoleau S, Iooss P, et al., 2003, Vancomycin      https://doi.org/10.1016/J.JCONREL.2010.04.002
               encapsulation in biodegradable poly(ε-caprolactone)   67.  Ruiz JC, Alvarez-Lorenzo C, Taboada P,  et al., 2008,
               microparticles for bone implantation. Influence of the   Polypropylene grafted with smart polymers (PNIPAAm/
               formulation process on size, drug loading, in vitro release   PAAc) for loading and controlled release of vancomycin.
               and cytocompatibility. Biomaterials, 24: 443–449.   Eur J Pharm Biopharm, 70: 467–477.
               https://doi.org/10.1016/S0142-9612(02)00357-5      https://doi.org/10.1016/J.EJPB.2008.05.020
            56.  Kim HW, Knowles  JC, Kim HE, 2005, Hydroxyapatite   68.  Meejoo S, Maneeprakorn W, Winotai P, 2006, Phase and
               porous scaffold engineered with biological polymer hybrid   thermal stability of nanocrystalline hydroxyapatite prepared
               coating for antibiotic Vancomycin release. J Mater Sci Mater   via microwave heating. Thermochimica Acta, 447: 115–120.
               Med, 16: 189–195.
                                                                  https://doi.org/10.1016/J.TCA.2006.04.013
               https://doi.org/10.1007/S10856-005-6679-Y
                                                               69.  Roy A, Jhunjhunwala S, Bayer E, et al., 2016, Porous calcium
            57.  De Gans BJ, Duineveld PC, Schubert US, 2004, Inkjet printing   phosphate-poly (lactic-co-glycolic) acid composite bone
               of polymers: State of the art and future developments. Adv   cement: A  viable tunable drug delivery system.  Mater Sci
               Mater, 16: 203–213.                                Eng C Mater Biol Appl, 59: 92–101.
               https://doi.org/10.1002/ADMA.200300385             https://doi.org/10.1016/J.MSEC.2015.09.081
            58.  Adamczyk M, Brate EM, Chiappetta EG,  et al., 1997,   70.  Dorozhkin S v. Amorphous calcium (ortho)phosphates.


            Volume 9 Issue 2 (2023)                        174                      https://doi.org/10.18063/ijb.v9i2.661
   177   178   179   180   181   182   183   184   185   186   187