Page 259 - IJB-9-2
P. 259

International Journal of Bioprinting                      Coronary and peripheral artery disease. State of the art.



               titanium stent: Feasibility and safety porcine trial. Cardiovasc   50.  Mohapatra S, Kar RK, Biswal PK, et al., 2022, Approaches of
               Interv Radiol, 32(5):1019–1027.                    3D printing in current drug delivery. Sensors Int, 3(100146):
                                                                  1–10.
               https://doi.org/10.1007/S00270-009-9572-0
                                                                  https://doi.org/10.1016/J.SINTL.2021.100146
            40.  Ueng KC, Wen SP, Lou CW, et al., 2016, Stainless steel/nitinol
               braid coronary stents: Braiding structure stability and cut   51.  Schwab A, Levato R, D’Este M,  et  al., 2020, Printability
               section treatment evaluation. J Ind Text, 45(5):965–977.  and shape fidelity of bioinks in 3D bioprinting. Chem Rev,
                                                                  120(19):11028–11055.
               https://doi.org/10.1177/1528083714550054
                                                                  https://doi.org/10.1021/acs.chemrev.0c00084
            41.  Marti P, Lampus F, Benevento D, et al., 2019, Trends in use
               of 3D printing in vascular surgery: A survey.  Int Angiol,   52.  Garcia-Villen F, Ruiz-Alonso S, Lafuente-Merchan M, et al.,
               38(5):418–424.                                     2021, Clay minerals as bioink ingredients for 3D printing
                                                                  and 3D bioprinting: Application in tissue engineering and
               https://doi.org/10.23736/S0392-9590.19.04148-8
                                                                  regenerative medicine.  Pharmaceutics, 13(1806):1–46.
            42.  Memon S, Friend E, Samuel SP,  et  al., 2021, 3D printing   [Online]. Available.
               of carotid artery and aortic arch anatomy: Implications   https://pubmed.ncbi.nlm.nih.gov/34834221/
               for preprocedural planning and carotid stenting. J Invasive
               Cardiol, 33(9):E723–E729. Accessed: December 30, 2021   53.  Manita PG, Garcia-Orue I, Santos-Vizcaino E, et al., 2021,
               [Online]. Available.                               3D bioprinting of functional skin substitutes: From current
                                                                  achievements to future goals.  Pharmaceuticals, 14(362):
               https://pubmed.ncbi.nlm.nih.gov/34473073/
                                                                  1–25. [Online]. Available.
            43.  Valverde I, Gomez G, Coserria JF, et al., 2015, 3D printed
               models for planning endovascular stenting in transverse   https://www.mdpi.com/1424-8247/14/4/362
               aortic  arch  hypoplasia.  Catheter Cardiovasc Interv,   54.  Jamee R, Araf Y, Bin Naser I, et al., 2021, The promising
               85(6):1006–1012.                                   rise of bioprinting in revolutionalizing medical science:
                                                                  Advances and possibilities. Regen Ther, 18:133–145.
               https://doi.org/10.1002/CCD.25810
                                                                  https://doi.org/10.1016/J.RETH.2021.05.006
            44.  Sun Z, Jansen S, 2019, Personalized 3D printed coronary
               models in coronary stenting.  Quant Imaging Med Surg,   55.  Begum S, Karim ANM, Ansari MNM,  et  al., 2020,
               9(8):1356–1367.                                    Nanomaterials, in Encyclopedia of Renewable and Sustainable
               https://doi.org/10.21037/QIMS.2019.06.21           Materials, vol. 1, S. Hashmi and I. A. Choudhury, Eds.
                                                                  Elsevier, 515–539.
            45.  Bortman J, Mahmood F, Schermerhorn M,  et  al., 2019,
               Use of 3-dimensional printing to create patient-specific   56.  Song X, Zhai W, Huang R,  et  al., 2022, Metal-based
               abdominal aortic aneurysm models for preoperative   3D-printed micro parts & structures, in  Encyclopedia of
               planning. J Cardiothorac Vasc Anesth, 33(5):1442–1446.  Materials: Metals and Alloys, vol. 4, F. G. Caballero, Ed.
                                                                  Elsevier, 448–461.
               https://doi.org/10.1053/J.JVCA.2018.08.011
                                                               57.  Zhu C, Liu T, Qian F,  et  al., 2017, 3D printed functional
            46.  Barón V, Guevara R, 2019, Three-dimensional printing-  nanomaterials for electrochemical energy storage.  Nano
               guided fenestrated endovascular aortic aneurysm repair   Today, 15:107–120.
               using open source software and physician-modified devices.
               J Vasc Surg Cases Innov Tech, 5(4):566–571.        https://doi.org/10.1016/J.NANTOD.2017.06.007
               https://doi.org/10.1016/J.JVSCIT.2019.08.006    58.  Xu C, Bouchemit A, L’Espérance G, et al., 2017, Solvent-cast
                                                                  based metal 3D printing and secondary metallic infiltration.
            47.  Young L, Harb SC, Puri R, et al., 2020, Percutaneous coronary   J Mater Chem C, 5(40):10448–10455.
               intervention of an anomalous coronary chronic total
               occlusion: The added value of three-dimensional printing.   https://doi.org/10.1039/C7TC02884A
               Catheter Cardiovasc Interv, 96(2):330–335.      59.  Guerra AJ, Cano P, Rabionet M,  et  al., 2018, 3D-printed
               https://doi.org/10.1002/CCD.28625                  PCL/PLA composite stents: Towards a new solution to
                                                                  cardiovascular problems. Materials (Basel, Switzerland), 11(9):
            48.  Walker JL, Santoro M, 2017, Processing and production of   1–13.
               bioresorbable polymer scaffolds for tissue engineering, in
               Bioresorbable Polymers for Biomedical Applications: From   https://doi.org/10.3390/MA11091679
               Fundamentals to Translational Medicine, G. Perale and J.   60.  Guerra  AJ,  Ciurana  J,  2018,  3D-printed  bioabsordable
               Hilborn, Eds. Woodhead Publishing, 181–203.        polycaprolactone stent: The effect of process parameters on
            49.  Singh R, Singh S, Hashmi MSJ, 2016, Implant materials   its physical features. Mater Design, 137:430–437.
               and their processing technologies, in Materials Science and   https://doi.org/10.1016/J.MATDES.2017.10.045
               Materials Engineering, Elsevier.


            Volume 9 Issue 2 (2023)                        251                     https://doi.org/10.18063/ijb.v9i2.664
   254   255   256   257   258   259   260   261   262   263   264