Page 259 - IJB-9-2
P. 259
International Journal of Bioprinting Coronary and peripheral artery disease. State of the art.
titanium stent: Feasibility and safety porcine trial. Cardiovasc 50. Mohapatra S, Kar RK, Biswal PK, et al., 2022, Approaches of
Interv Radiol, 32(5):1019–1027. 3D printing in current drug delivery. Sensors Int, 3(100146):
1–10.
https://doi.org/10.1007/S00270-009-9572-0
https://doi.org/10.1016/J.SINTL.2021.100146
40. Ueng KC, Wen SP, Lou CW, et al., 2016, Stainless steel/nitinol
braid coronary stents: Braiding structure stability and cut 51. Schwab A, Levato R, D’Este M, et al., 2020, Printability
section treatment evaluation. J Ind Text, 45(5):965–977. and shape fidelity of bioinks in 3D bioprinting. Chem Rev,
120(19):11028–11055.
https://doi.org/10.1177/1528083714550054
https://doi.org/10.1021/acs.chemrev.0c00084
41. Marti P, Lampus F, Benevento D, et al., 2019, Trends in use
of 3D printing in vascular surgery: A survey. Int Angiol, 52. Garcia-Villen F, Ruiz-Alonso S, Lafuente-Merchan M, et al.,
38(5):418–424. 2021, Clay minerals as bioink ingredients for 3D printing
and 3D bioprinting: Application in tissue engineering and
https://doi.org/10.23736/S0392-9590.19.04148-8
regenerative medicine. Pharmaceutics, 13(1806):1–46.
42. Memon S, Friend E, Samuel SP, et al., 2021, 3D printing [Online]. Available.
of carotid artery and aortic arch anatomy: Implications https://pubmed.ncbi.nlm.nih.gov/34834221/
for preprocedural planning and carotid stenting. J Invasive
Cardiol, 33(9):E723–E729. Accessed: December 30, 2021 53. Manita PG, Garcia-Orue I, Santos-Vizcaino E, et al., 2021,
[Online]. Available. 3D bioprinting of functional skin substitutes: From current
achievements to future goals. Pharmaceuticals, 14(362):
https://pubmed.ncbi.nlm.nih.gov/34473073/
1–25. [Online]. Available.
43. Valverde I, Gomez G, Coserria JF, et al., 2015, 3D printed
models for planning endovascular stenting in transverse https://www.mdpi.com/1424-8247/14/4/362
aortic arch hypoplasia. Catheter Cardiovasc Interv, 54. Jamee R, Araf Y, Bin Naser I, et al., 2021, The promising
85(6):1006–1012. rise of bioprinting in revolutionalizing medical science:
Advances and possibilities. Regen Ther, 18:133–145.
https://doi.org/10.1002/CCD.25810
https://doi.org/10.1016/J.RETH.2021.05.006
44. Sun Z, Jansen S, 2019, Personalized 3D printed coronary
models in coronary stenting. Quant Imaging Med Surg, 55. Begum S, Karim ANM, Ansari MNM, et al., 2020,
9(8):1356–1367. Nanomaterials, in Encyclopedia of Renewable and Sustainable
https://doi.org/10.21037/QIMS.2019.06.21 Materials, vol. 1, S. Hashmi and I. A. Choudhury, Eds.
Elsevier, 515–539.
45. Bortman J, Mahmood F, Schermerhorn M, et al., 2019,
Use of 3-dimensional printing to create patient-specific 56. Song X, Zhai W, Huang R, et al., 2022, Metal-based
abdominal aortic aneurysm models for preoperative 3D-printed micro parts & structures, in Encyclopedia of
planning. J Cardiothorac Vasc Anesth, 33(5):1442–1446. Materials: Metals and Alloys, vol. 4, F. G. Caballero, Ed.
Elsevier, 448–461.
https://doi.org/10.1053/J.JVCA.2018.08.011
57. Zhu C, Liu T, Qian F, et al., 2017, 3D printed functional
46. Barón V, Guevara R, 2019, Three-dimensional printing- nanomaterials for electrochemical energy storage. Nano
guided fenestrated endovascular aortic aneurysm repair Today, 15:107–120.
using open source software and physician-modified devices.
J Vasc Surg Cases Innov Tech, 5(4):566–571. https://doi.org/10.1016/J.NANTOD.2017.06.007
https://doi.org/10.1016/J.JVSCIT.2019.08.006 58. Xu C, Bouchemit A, L’Espérance G, et al., 2017, Solvent-cast
based metal 3D printing and secondary metallic infiltration.
47. Young L, Harb SC, Puri R, et al., 2020, Percutaneous coronary J Mater Chem C, 5(40):10448–10455.
intervention of an anomalous coronary chronic total
occlusion: The added value of three-dimensional printing. https://doi.org/10.1039/C7TC02884A
Catheter Cardiovasc Interv, 96(2):330–335. 59. Guerra AJ, Cano P, Rabionet M, et al., 2018, 3D-printed
https://doi.org/10.1002/CCD.28625 PCL/PLA composite stents: Towards a new solution to
cardiovascular problems. Materials (Basel, Switzerland), 11(9):
48. Walker JL, Santoro M, 2017, Processing and production of 1–13.
bioresorbable polymer scaffolds for tissue engineering, in
Bioresorbable Polymers for Biomedical Applications: From https://doi.org/10.3390/MA11091679
Fundamentals to Translational Medicine, G. Perale and J. 60. Guerra AJ, Ciurana J, 2018, 3D-printed bioabsordable
Hilborn, Eds. Woodhead Publishing, 181–203. polycaprolactone stent: The effect of process parameters on
49. Singh R, Singh S, Hashmi MSJ, 2016, Implant materials its physical features. Mater Design, 137:430–437.
and their processing technologies, in Materials Science and https://doi.org/10.1016/J.MATDES.2017.10.045
Materials Engineering, Elsevier.
Volume 9 Issue 2 (2023) 251 https://doi.org/10.18063/ijb.v9i2.664

