Page 262 - IJB-9-2
P. 262

International Journal of Bioprinting                      Coronary and peripheral artery disease. State of the art.



            104. Khoo ZX, Liu Y, An J, et al., 2018, A review of selective laser   115. Zhou K, Dey M, Ayan B, et al., 2021, Fabrication of PDMS
               melted NiTi shape memory alloy. Material, 11:519.  microfluidic devices using nanoclay-reinforced Pluronic
                                                                  F-127 as a sacrificial ink. Biomed Mater, 16(4):45005.
               https://doi.org/10.3390/MA11040519
                                                                  https://doi.org/10.1088/1748-605X/abe55e
            105. Biffi CA, Fiocchi J, Valenza F, 2020,  et  al., Selective laser
               melting of NiTi shape memory alloy: Processability,   116. Gu Z, Rolfe BE, Xu ZP, et al., 2012, Antibody-targeted drug
               microstructure,  and  superelasticity.  Shape  Mem  delivery to injured arteries using layered double hydroxide
               Superelasticity, 6(3):342–353.                     nanoparticles. Adv Healthc Mater, 1(5):669–673.
               https://doi.org/10.1007/S40830-020-00298-8/FIGURES/11  https://doi.org/10.1002/ADHM.201200069
            106. Safavi MS, Bordbar‐Khiabani A, Khalil‐allafi J, et al., 2022,   117. Gu Z, Rolfe B, Thomas A, et al., 2013, Restenosis treatments
               Additive manufacturing: An opportunity for the fabrication   using nanoparticle-based drug delivery systems.  Curr
               of near‐net‐shape NiTi implants.  J Manuf Mater Process,   Pharm Des, 19(35):6330–6339.
               6(3):1–22.                                         https://doi.org/10.2174/1381612811319350009
               https://doi.org/10.3390/JMMP6030065             118. Gu Z, Rolfe BE, Xu ZP, et al., 2010, Enhanced effects of low
            107. Hassani FA, Peh WYX, Gammad GGL, et al., 2017, A 3D   molecular weight heparin intercalated with layered double
               printed implantable device for voiding the bladder using   hydroxide nanoparticles on rat vascular smooth muscle
               shape memory alloy (SMA) actuators. Adv Sci, 4(11):1–10.  cells. Biomaterials, 31(20):5455–5462.
               https://doi.org/10.1002/ADVS.201700143             https://doi.org/10.1016/J.BIOMATERIALS.2010.03.050
            108. Tong A, Pham QL, Abatemarco P,  et  al., 2021, Review of   119. Ishihara S, Machino T, Deguchi K, et al., 2021, Disposable
               low-cost 3D bioprinters: State of the market and observed   nitric  oxide generator based on a structurally deformed
               future trends. SLAS Technol, 26(4):333–366.        nitrite-type layered double hydroxide.  Inorg Chem,
                                                                  60(21):16008–16015.
               https://doi.org/10.1177/24726303211020297
                                                                  https://doi.org/10.1021/ACS.INORGCHEM.1C00456
            109. Choonara YE, Du Toit LC, Kumar P, et al., 2016, 3D-printing
               and the effect on medical costs: A new era?  Expert Rev   120. Russell SE, González Carballo JM, Orellana-Tavra C, et al.,
               Pharmacoecon Outcomes Res, 16(1):23–32.            2017, A comparison of copper and acid site zeolites for the
                                                                  production of nitric oxide for biomedical applications. Dalt
               https://doi.org/10.1586/14737167.2016.1138860      Trans, 46(12):3915–3920.
            110. van Tonder L, Labuschagné FJWJ, 2021, Systematic   https://doi.org/10.1039/C7DT00195A
               literature review of the effect of layered double hydroxides
               on the mechanical properties of rubber. Polymer, 13:3716.  121. Doyle RA, Russell SE, Morris RE, 2019, Nitric oxide
                                                                  production from nitrite by a series of zeolites produced via the
               https://doi.org/10.3390/POLYM13213716              ADOR route. Microporous Mesoporous Mater, 280:367–371.
            111. Coppola B, Cappetti N, Di Maio L,  et  al., 2017, Layered   https://doi.org/10.1016/J.MICROMESO.2019.02.019
               silicate reinforced polylactic acid filaments for 3D printing
               of polymer nanocomposites, 1–4.                 122. Jung SY, Kim HM, Hwang S, et al., 2020, Physicochemical
                                                                  properties and hematocompatibility of layered double
               https://doi.org/10.1109/RTSI.2017.8065892          hydroxide-based anticancer drug methotrexate delivery
            112. Papageorgiou DG, Li Z, Liu M,  et  al., 2020, Mechanisms   system. Pharm, 12:1210.
               of mechanical reinforcement by graphene and carbon   https://doi.org/10.3390/PHARMACEUTICS12121210
               nanotubes in polymer nanocomposites.  Nanoscale, 12(4.   123. Gu Z, Yan S, Cheong S, et al., 2018, Layered double hydroxide
               Royal Society of Chemistry): 2228–2267.
                                                                  nanoparticles: Impact on vascular cells, blood cells and the
               https://doi.org/10.1039/c9nr06952f                 complement system. J Colloid Interface Sci, 512:404–410.
            113. Coleman JN, Khan U, Gun’ko YK, 2006, Mechanical   https://doi.org/10.1016/J.JCIS.2017.10.069
               reinforcement of polymers using carbon nanotubes.  Adv   124. Vaiana CA, Leonard MK, Drummy LF, et al., 2011, Epidermal
               Mater, 18(6):689–706.                              growth  factor: Layered silicate  nanocomposites  for  tissue
               https://doi.org/10.1002/ADMA.200501851             regeneration. Biomacromolecules, 12(9):3139–3146.
            114. Kim H, Ryu KH, Baek D,  et  al., 2020, 3D printing of   https://doi.org/10.1021/bm200616v
               polyethylene terephthalate glycol-sepiolite composites   125. Wu K, Feng R, Jiao Y,  et  al., 2017, Effect of halloysite
               with nanoscale orientation.  ACS Appl Mater Interfaces,   nanotubes on the structure and function of important
               12(20):23453–23463.                                multiple blood components. Mater Sci Eng C, 75:72–78.
               https://doi.org/10.1021/acsami.0c03830             https://doi.org/10.1016/J.MSEC.2017.02.022



            Volume 9 Issue 2 (2023)                        254                     https://doi.org/10.18063/ijb.v9i2.664
   257   258   259   260   261   262   263   264   265   266   267