Page 262 - IJB-9-2
P. 262
International Journal of Bioprinting Coronary and peripheral artery disease. State of the art.
104. Khoo ZX, Liu Y, An J, et al., 2018, A review of selective laser 115. Zhou K, Dey M, Ayan B, et al., 2021, Fabrication of PDMS
melted NiTi shape memory alloy. Material, 11:519. microfluidic devices using nanoclay-reinforced Pluronic
F-127 as a sacrificial ink. Biomed Mater, 16(4):45005.
https://doi.org/10.3390/MA11040519
https://doi.org/10.1088/1748-605X/abe55e
105. Biffi CA, Fiocchi J, Valenza F, 2020, et al., Selective laser
melting of NiTi shape memory alloy: Processability, 116. Gu Z, Rolfe BE, Xu ZP, et al., 2012, Antibody-targeted drug
microstructure, and superelasticity. Shape Mem delivery to injured arteries using layered double hydroxide
Superelasticity, 6(3):342–353. nanoparticles. Adv Healthc Mater, 1(5):669–673.
https://doi.org/10.1007/S40830-020-00298-8/FIGURES/11 https://doi.org/10.1002/ADHM.201200069
106. Safavi MS, Bordbar‐Khiabani A, Khalil‐allafi J, et al., 2022, 117. Gu Z, Rolfe B, Thomas A, et al., 2013, Restenosis treatments
Additive manufacturing: An opportunity for the fabrication using nanoparticle-based drug delivery systems. Curr
of near‐net‐shape NiTi implants. J Manuf Mater Process, Pharm Des, 19(35):6330–6339.
6(3):1–22. https://doi.org/10.2174/1381612811319350009
https://doi.org/10.3390/JMMP6030065 118. Gu Z, Rolfe BE, Xu ZP, et al., 2010, Enhanced effects of low
107. Hassani FA, Peh WYX, Gammad GGL, et al., 2017, A 3D molecular weight heparin intercalated with layered double
printed implantable device for voiding the bladder using hydroxide nanoparticles on rat vascular smooth muscle
shape memory alloy (SMA) actuators. Adv Sci, 4(11):1–10. cells. Biomaterials, 31(20):5455–5462.
https://doi.org/10.1002/ADVS.201700143 https://doi.org/10.1016/J.BIOMATERIALS.2010.03.050
108. Tong A, Pham QL, Abatemarco P, et al., 2021, Review of 119. Ishihara S, Machino T, Deguchi K, et al., 2021, Disposable
low-cost 3D bioprinters: State of the market and observed nitric oxide generator based on a structurally deformed
future trends. SLAS Technol, 26(4):333–366. nitrite-type layered double hydroxide. Inorg Chem,
60(21):16008–16015.
https://doi.org/10.1177/24726303211020297
https://doi.org/10.1021/ACS.INORGCHEM.1C00456
109. Choonara YE, Du Toit LC, Kumar P, et al., 2016, 3D-printing
and the effect on medical costs: A new era? Expert Rev 120. Russell SE, González Carballo JM, Orellana-Tavra C, et al.,
Pharmacoecon Outcomes Res, 16(1):23–32. 2017, A comparison of copper and acid site zeolites for the
production of nitric oxide for biomedical applications. Dalt
https://doi.org/10.1586/14737167.2016.1138860 Trans, 46(12):3915–3920.
110. van Tonder L, Labuschagné FJWJ, 2021, Systematic https://doi.org/10.1039/C7DT00195A
literature review of the effect of layered double hydroxides
on the mechanical properties of rubber. Polymer, 13:3716. 121. Doyle RA, Russell SE, Morris RE, 2019, Nitric oxide
production from nitrite by a series of zeolites produced via the
https://doi.org/10.3390/POLYM13213716 ADOR route. Microporous Mesoporous Mater, 280:367–371.
111. Coppola B, Cappetti N, Di Maio L, et al., 2017, Layered https://doi.org/10.1016/J.MICROMESO.2019.02.019
silicate reinforced polylactic acid filaments for 3D printing
of polymer nanocomposites, 1–4. 122. Jung SY, Kim HM, Hwang S, et al., 2020, Physicochemical
properties and hematocompatibility of layered double
https://doi.org/10.1109/RTSI.2017.8065892 hydroxide-based anticancer drug methotrexate delivery
112. Papageorgiou DG, Li Z, Liu M, et al., 2020, Mechanisms system. Pharm, 12:1210.
of mechanical reinforcement by graphene and carbon https://doi.org/10.3390/PHARMACEUTICS12121210
nanotubes in polymer nanocomposites. Nanoscale, 12(4. 123. Gu Z, Yan S, Cheong S, et al., 2018, Layered double hydroxide
Royal Society of Chemistry): 2228–2267.
nanoparticles: Impact on vascular cells, blood cells and the
https://doi.org/10.1039/c9nr06952f complement system. J Colloid Interface Sci, 512:404–410.
113. Coleman JN, Khan U, Gun’ko YK, 2006, Mechanical https://doi.org/10.1016/J.JCIS.2017.10.069
reinforcement of polymers using carbon nanotubes. Adv 124. Vaiana CA, Leonard MK, Drummy LF, et al., 2011, Epidermal
Mater, 18(6):689–706. growth factor: Layered silicate nanocomposites for tissue
https://doi.org/10.1002/ADMA.200501851 regeneration. Biomacromolecules, 12(9):3139–3146.
114. Kim H, Ryu KH, Baek D, et al., 2020, 3D printing of https://doi.org/10.1021/bm200616v
polyethylene terephthalate glycol-sepiolite composites 125. Wu K, Feng R, Jiao Y, et al., 2017, Effect of halloysite
with nanoscale orientation. ACS Appl Mater Interfaces, nanotubes on the structure and function of important
12(20):23453–23463. multiple blood components. Mater Sci Eng C, 75:72–78.
https://doi.org/10.1021/acsami.0c03830 https://doi.org/10.1016/J.MSEC.2017.02.022
Volume 9 Issue 2 (2023) 254 https://doi.org/10.18063/ijb.v9i2.664

