Page 260 - IJB-9-2
P. 260

International Journal of Bioprinting                      Coronary and peripheral artery disease. State of the art.



            61.  Wu Z, Zhao J, Wu W,  et al., 2017, A novel 3D additive   powder/polycaprolactone composite material fabricated
               manufacturing machine to biodegradable stents.  Proc   using three-dimensional printing for cardiovascular stent
               Manuf, 13:718–723.                                 application. Proc Inst Mech Eng H, 234(9):975–987.
               https://doi.org/10.1016/J.PROMFG.2017.09.118       https://doi.org/10.1177/0954411920936055
            62.  Wu  Z,  et  al.,  2018,  Radial  compressive  property  and  the   73.  Van Lith R, Baker E, Ware H, et al., 2016, 3D-printing strong
               proof-of-concept study for realizing self-expansion of   high-resolution antioxidant bioresorbable vascular stents.
               3D printing polylactic acid vascular stents with negative   Adv Mater Technol, 1(9): 1–7.
               Poisson’s ratio structure. Materials (Basel), 11(8):1357.  https://doi.org/10.1002/ADMT.201600138
               https://doi.org/10.3390/MA11081357              74.  Ware HOT, Farsheed AC, Akar B, et al., 2018, High-speed on-
            63.  Jia H, Gu SY, Chang K, 2018, 3D printed self-expandable   demand 3D printed bioresorbable vascular scaffolds. Mater
               vascular stents from biodegradable shape memory polymer.   Today Chem, 7:25–34.
               Adv Polym Technol, 37(8):3222–3228.                https://doi.org/10.1016/J.MTCHEM.2017.10.002
               https://doi.org/10.1002/ADV.22091               75.  de Oliveira MF, da Silva LCE, de Oliveira MG, 2021, 3D
            64.  Zhang C, Cai D, Liao P, et al., 2021, 4D printing of shape-  printed bioresorbable nitric oxide-releasing vascular stents.
               memory polymeric scaffolds for adaptive biomedical   Bioprinting, 22(e00137): 1–10.
               implantation. Acta Biomater, 122:101–110.          https://doi.org/10.1016/J.BPRINT.2021.E00137
               https://doi.org/10.1016/J.ACTBIO.2020.12.042    76.  Yang J, Webb AR, Pickerill SJ,  et  al., 2006, Synthesis and
            65.  Kim D, Kim T, Lee YG, 2019, 4D printed bifurcated stents   evaluation of poly(diol citrate) biodegradable elastomers.
               with kirigami-inspired structures. J Vis Exp, 149(e59746):1–9.  Biomaterials, 27(9):1889–1898.
               https://doi.org/10.3791/59746                      https://doi.org/10.1016/J.BIOMATERIALS.2005.05.106
            66.  Kim T, Lee Y-G, 2018, Shape transformable bifurcated   77.  Ismaeel A, Papoutsi E, Miserlis D, et  al., 2020, The nitric
               stents. Sci Rep, 8(13911):1–9.                     oxide system in peripheral artery disease: Connection with
                                                                  oxidative stress and biopterins. Antioxidants, 9(7):1–16.
               https://doi.org/10.1038/s41598-018-32129-3
                                                                  https://doi.org/10.3390/ANTIOX9070590
            67.  Zhang Y, Zhao J, Yang G,  et  al., 2019, Mechanical
               properties and degradation of drug eluted bioresorbable   78.  Flege C, Vogt F, Höges S,  et  al., 2013, Development and
               vascular scaffolds prepared by three-dimensional printing   characterization of a coronary polylactic acid stent prototype
               technology. J Biomater Sci Polym Ed, 30(7):547–560.  generated by selective laser melting. J Mater Sci Mater Med,
                                                                  24(1):241–255.
               https://doi.org/10.1080/09205063.2019.1586303
            68.  Lei Y, Chen X, Li Z,  et  al., 2020, A new process for   https://doi.org/10.1007/S10856-012-4779-Z
               customized patient-specific  aortic  stent  graft  using 3D   79.  Elliott MR, Kim D, Molony DS, et al., 2019, Establishment
               printing technique. Med Eng Phys, 77:80–87.        of  an automated algorithm  utilizing optical  coherence
               https://doi.org/10.1016/j.medengphy.2019.12.002    tomography and micro-computed tomography imaging to
                                                                  reconstruct the 3-D deformed stent geometry. IEEE Trans
            69.  Park SA, Lee SJ, Lim KS,  et  al., 2015, In vivo evaluation   Med Imaging, 38(3):710–720.
               and characterization of a bio-absorbable drug-coated stent
               fabricated using a 3D-printing system.  Mater Lett, 141:   https://doi.org/10.1109/TMI.2018.2870714
               355–358.                                        80.  Wiesent L, Spear A, Nonn A, 2022, Computational analysis
               https://doi.org/10.1016/J.MATLET.2014.11.119       of the effects of geometric irregularities on the interaction of
                                                                  an additively manufactured 316L stainless steel stent and a
            70.  Misra SK, Ostadhossein F, Babu R, et al., 2017, 3D-printed   coronary artery. J Mech Behav Biomed Mater, 125:1–12.
               multidrug-eluting stent from graphene-nanoplatelet-doped
               biodegradable polymer composite.  Adv  Healthc  Mater,   https://doi.org/10.1016/J.JMBBM.2021.104878
               6(1700008):1–14.                                81.  Chiastra C, Mazzi V, Lodi Rizzini M, et al., 2022, Coronary
               https://doi.org/10.1002/ADHM.201700008             artery stenting affects wall shear stress topological skeleton.
                                                                  J Biomech Eng. 144(6):061002, 1–11.
            71.  Zhou Y, Zhou D, Cao P, et al., 2021, 4D printing of shape
               memory vascular stent based on βCD-g-polycaprolactone.   https://doi.org/10.1115/1.4053503
               Macromol Rapid Commun, 42(14):2100176.          82.  Pan C, Han Y, Lu J, 2021, Structural design of vascular stents:
               https://doi.org/10.1002/MARC.202100176             A review. Micromachines, 12(7):770.
            72.  Singh J, Kaur T, Singh N,  et  al., 2020, Biological and   https://doi.org/10.3390/MI12070770
               mechanical characterization of biodegradable carbonyl iron


            Volume 9 Issue 2 (2023)                        252                     https://doi.org/10.18063/ijb.v9i2.664
   255   256   257   258   259   260   261   262   263   264   265