Page 260 - IJB-9-2
P. 260
International Journal of Bioprinting Coronary and peripheral artery disease. State of the art.
61. Wu Z, Zhao J, Wu W, et al., 2017, A novel 3D additive powder/polycaprolactone composite material fabricated
manufacturing machine to biodegradable stents. Proc using three-dimensional printing for cardiovascular stent
Manuf, 13:718–723. application. Proc Inst Mech Eng H, 234(9):975–987.
https://doi.org/10.1016/J.PROMFG.2017.09.118 https://doi.org/10.1177/0954411920936055
62. Wu Z, et al., 2018, Radial compressive property and the 73. Van Lith R, Baker E, Ware H, et al., 2016, 3D-printing strong
proof-of-concept study for realizing self-expansion of high-resolution antioxidant bioresorbable vascular stents.
3D printing polylactic acid vascular stents with negative Adv Mater Technol, 1(9): 1–7.
Poisson’s ratio structure. Materials (Basel), 11(8):1357. https://doi.org/10.1002/ADMT.201600138
https://doi.org/10.3390/MA11081357 74. Ware HOT, Farsheed AC, Akar B, et al., 2018, High-speed on-
63. Jia H, Gu SY, Chang K, 2018, 3D printed self-expandable demand 3D printed bioresorbable vascular scaffolds. Mater
vascular stents from biodegradable shape memory polymer. Today Chem, 7:25–34.
Adv Polym Technol, 37(8):3222–3228. https://doi.org/10.1016/J.MTCHEM.2017.10.002
https://doi.org/10.1002/ADV.22091 75. de Oliveira MF, da Silva LCE, de Oliveira MG, 2021, 3D
64. Zhang C, Cai D, Liao P, et al., 2021, 4D printing of shape- printed bioresorbable nitric oxide-releasing vascular stents.
memory polymeric scaffolds for adaptive biomedical Bioprinting, 22(e00137): 1–10.
implantation. Acta Biomater, 122:101–110. https://doi.org/10.1016/J.BPRINT.2021.E00137
https://doi.org/10.1016/J.ACTBIO.2020.12.042 76. Yang J, Webb AR, Pickerill SJ, et al., 2006, Synthesis and
65. Kim D, Kim T, Lee YG, 2019, 4D printed bifurcated stents evaluation of poly(diol citrate) biodegradable elastomers.
with kirigami-inspired structures. J Vis Exp, 149(e59746):1–9. Biomaterials, 27(9):1889–1898.
https://doi.org/10.3791/59746 https://doi.org/10.1016/J.BIOMATERIALS.2005.05.106
66. Kim T, Lee Y-G, 2018, Shape transformable bifurcated 77. Ismaeel A, Papoutsi E, Miserlis D, et al., 2020, The nitric
stents. Sci Rep, 8(13911):1–9. oxide system in peripheral artery disease: Connection with
oxidative stress and biopterins. Antioxidants, 9(7):1–16.
https://doi.org/10.1038/s41598-018-32129-3
https://doi.org/10.3390/ANTIOX9070590
67. Zhang Y, Zhao J, Yang G, et al., 2019, Mechanical
properties and degradation of drug eluted bioresorbable 78. Flege C, Vogt F, Höges S, et al., 2013, Development and
vascular scaffolds prepared by three-dimensional printing characterization of a coronary polylactic acid stent prototype
technology. J Biomater Sci Polym Ed, 30(7):547–560. generated by selective laser melting. J Mater Sci Mater Med,
24(1):241–255.
https://doi.org/10.1080/09205063.2019.1586303
68. Lei Y, Chen X, Li Z, et al., 2020, A new process for https://doi.org/10.1007/S10856-012-4779-Z
customized patient-specific aortic stent graft using 3D 79. Elliott MR, Kim D, Molony DS, et al., 2019, Establishment
printing technique. Med Eng Phys, 77:80–87. of an automated algorithm utilizing optical coherence
https://doi.org/10.1016/j.medengphy.2019.12.002 tomography and micro-computed tomography imaging to
reconstruct the 3-D deformed stent geometry. IEEE Trans
69. Park SA, Lee SJ, Lim KS, et al., 2015, In vivo evaluation Med Imaging, 38(3):710–720.
and characterization of a bio-absorbable drug-coated stent
fabricated using a 3D-printing system. Mater Lett, 141: https://doi.org/10.1109/TMI.2018.2870714
355–358. 80. Wiesent L, Spear A, Nonn A, 2022, Computational analysis
https://doi.org/10.1016/J.MATLET.2014.11.119 of the effects of geometric irregularities on the interaction of
an additively manufactured 316L stainless steel stent and a
70. Misra SK, Ostadhossein F, Babu R, et al., 2017, 3D-printed coronary artery. J Mech Behav Biomed Mater, 125:1–12.
multidrug-eluting stent from graphene-nanoplatelet-doped
biodegradable polymer composite. Adv Healthc Mater, https://doi.org/10.1016/J.JMBBM.2021.104878
6(1700008):1–14. 81. Chiastra C, Mazzi V, Lodi Rizzini M, et al., 2022, Coronary
https://doi.org/10.1002/ADHM.201700008 artery stenting affects wall shear stress topological skeleton.
J Biomech Eng. 144(6):061002, 1–11.
71. Zhou Y, Zhou D, Cao P, et al., 2021, 4D printing of shape
memory vascular stent based on βCD-g-polycaprolactone. https://doi.org/10.1115/1.4053503
Macromol Rapid Commun, 42(14):2100176. 82. Pan C, Han Y, Lu J, 2021, Structural design of vascular stents:
https://doi.org/10.1002/MARC.202100176 A review. Micromachines, 12(7):770.
72. Singh J, Kaur T, Singh N, et al., 2020, Biological and https://doi.org/10.3390/MI12070770
mechanical characterization of biodegradable carbonyl iron
Volume 9 Issue 2 (2023) 252 https://doi.org/10.18063/ijb.v9i2.664

