Page 263 - IJB-9-2
P. 263
International Journal of Bioprinting Coronary and peripheral artery disease. State of the art.
126. Devlin JJ, Kircher S, Kozen BG, et al., 2011, Comparison 135. Bhatia M, Bhatia S, Siddhartha, 2022, Smart materials for
of ChitoFlex®, CELOX , and QuikClot® in control of cardiovascular devices. Mater Today Proc, 53:307–309.
TM
hemorrhage. J Emerg Med, 41(3):237–245. https://doi.org/10.1016/J.MATPR.2021.12.591
ht t ps://doi .or g/ht t p://dx.doi .or g/10.1016/j . 136. Jiang JJ, Hu Y, Chen X, et al., 2018, Development and
jemermed.2009.02.017 application of shape memory intelligent composites. Cailiao
127. Ran Y, et al., 2010, QuikClot combat gauze use for hemorrhage Gongcheng/J Mater Eng, 46(8):1–13.
control in military trauma: January 2009 Israel Defense Force https://doi.org/10.11868/J.ISSN.1001-4381.2018.000344
Experience in the Gaza Strip—A preliminary report of 14 cases.
Prehosp Disaster Med, 25(6):584–588 [Online]. Available: 137. Hua W, Shi W, Mitchell K, et al., 2022, 3D printing of
biodegradable polymer vascular stents: A review. Chin J
http://journals.cambridge.org/action/display Mech Eng Addit Manuf Front, 1(2):100020.
Abstract?fromPage=online&aid=8257157&fileId=
S1049023X00008797 https://doi.org/10.1016/J.CJMEAM.2022.100020
128. Choi SJ, Oh JM, Choy JH, 2008, Safety aspect of inorganic 138. Kluska E, Gruda P, Majca-Nowak N, 2018, The accuracy and
layered nanoparticles: Size-dependency in vitro and in vivo. the printing resolution comparison of different 3D printing
J Nanosci Nanotechnol, 8(10):5297–5301. technologies. Trans Aerosp Res, 2018(3):69–86.
https://doi.org/10.1166/JNN.2008.1143 https://doi.org/10.2478/TAR-2018-0023
129. Tahmasebi-Birgani Z, Solati-Hashjin M, Peirovi H, et al., 139. Nulty A, 2022, A comparison of trueness and precision of 12
2010, Layered double hydroxide: A new ceramid-based 3D printers used in dentistry. BDJ Open, 8(1):1–9.
hemostatic agent?, in Ceramic Transactions, vol. 218, R. https://doi.org/10.1038/s41405-022-00108-6
Narayan, M. Singh, and McKittrick, Eds. Wiley-American
Ceramic Society, 53–57. 140. Chae MP, Chung RD, Smith JA, et al., 2021, The accuracy
of clinical 3D printing in reconstructive surgery: Literature
130. Mahesh V, Joseph AS, Mahesh V, et al., 2021, Investigation review and in vivo validation study. Gland Surg, 10(7): 2293.
on the mechanical properties of additively manufactured
PETG composites reinforced with OMMT nanoclay and https://doi.org/10.21037/GS-21-264
carbon fibers. Polym Compos, 42:2380–2395. 141. Ho Kim J, Pinhata-Baptista OH, Ayres AP, et al., 2022,
https://doi.org/10.1002/pc.25985 Accuracy comparison among 3D-printing technologies to
produce dental models. Appl Sci, 12(8425):1–9.
131. Coppola B, Cappetti N, Di Maio L, et al., 2018, 3D printing of
PLA/clay nanocomposites: Influence of printing temperature on 142. Nguyen PD, Nguyen TQ, Tao QB, et al., 2022, A data-driven
printed samples properties. Materials (Basel), 11(1947):1–17. machine learning approach for the 3D printing process
optimisation. Virtual Phys Prototyp 17(4):768–786.
https://doi.org/10.3390/ma11101947
https://doi.org/10.1080/17452759.2022.2068446
132. Paspali A, Bao Y, Gawne DT, et al., 2018, The influence of
nanostructure on the mechanical properties of 3D printed 143. Gong X, Zeng D, Groeneveld-Meijer W, et al., 2022, Additive
polylactide/nanoclay composites. Compos Part B Eng, manufacturing: A machine learning model of process-
152:160–168. structure-property linkages for machining behavior of Ti-
6Al-4V. Mater Sci Addit Manuf, 1(1):6.
https://doi.org/10.1016/j.compositesb.2018.07.005
133. Adepu S, Luo H, Ramakrishna S, 2021, Heparin-tagged PLA- https://doi.org/10.18063/MSAM.V1I1.6
PEG copolymer-encapsulated biochanin A-loaded (Mg/Al) 144. Sing SL, Kuo CN, Shih CT, et al., 2021, Perspectives of using
LDH nanoparticles recommended for non-thrombogenic machine learning in laser powder bed fusion for metal
and anti-proliferative stent coating. Int J Mol Sci, additive manufacturing. Virtual Phys Prototyp 16(3):372–386.
22(11):5433.
https://doi.org/10.1080/17452759.2021.1944229
https://doi.org/10.3390/IJMS22115433/S1
145. Smolderen KG, Wang K, De Pouvourville G, et al., 2012,
134. Xiao R, Huang WM, Xiao R, et al., 2020, Heating/solvent Two-year vascular hospitalisation rates and associated
responsive shape-memory polymers for implant biomedical costs in patients at risk of atherothrombosis in France and
devices in minimally invasive surgery: Current status and Germany: Highest burden for peripheral arterial disease.
challenge. Macromol Biosci, 20(8):2000108. Eur J Vasc Endovasc Surg, 43(2):198–207.
https://doi.org/10.1002/MABI.202000108 https://doi.org/10.1016/J.EJVS.2011.09.016
Volume 9 Issue 2 (2023) 255 https://doi.org/10.18063/ijb.v9i2.664

