Page 263 - IJB-9-2
P. 263

International Journal of Bioprinting                      Coronary and peripheral artery disease. State of the art.



            126. Devlin JJ, Kircher S, Kozen BG,  et al., 2011, Comparison   135. Bhatia M, Bhatia S, Siddhartha, 2022, Smart materials for
               of ChitoFlex®, CELOX , and QuikClot® in control of   cardiovascular devices. Mater Today Proc, 53:307–309.
                                 TM
               hemorrhage. J Emerg Med, 41(3):237–245.            https://doi.org/10.1016/J.MATPR.2021.12.591
               ht t ps://doi .or g/ht t p://dx.doi .or g/10.1016/j .  136. Jiang JJ, Hu Y, Chen X,  et  al., 2018, Development and
               jemermed.2009.02.017                               application of shape memory intelligent composites. Cailiao
            127.  Ran Y, et al., 2010, QuikClot combat gauze use for hemorrhage   Gongcheng/J Mater Eng, 46(8):1–13.
               control in military trauma: January 2009 Israel Defense Force   https://doi.org/10.11868/J.ISSN.1001-4381.2018.000344
               Experience in the Gaza Strip—A preliminary report of 14 cases.
               Prehosp Disaster Med, 25(6):584–588 [Online]. Available:  137. Hua W, Shi W, Mitchell K,  et  al., 2022, 3D printing of
                                                                  biodegradable polymer vascular stents: A review.  Chin J
               http://journals.cambridge.org/action/display       Mech Eng Addit Manuf Front, 1(2):100020.
               Abstract?fromPage=online&aid=8257157&fileId=
               S1049023X00008797                                  https://doi.org/10.1016/J.CJMEAM.2022.100020
            128. Choi SJ, Oh JM, Choy JH, 2008, Safety aspect of inorganic   138. Kluska E, Gruda P, Majca-Nowak N, 2018, The accuracy and
               layered nanoparticles: Size-dependency in vitro and in vivo.   the printing resolution comparison of different 3D printing
               J Nanosci Nanotechnol, 8(10):5297–5301.            technologies. Trans Aerosp Res, 2018(3):69–86.
               https://doi.org/10.1166/JNN.2008.1143              https://doi.org/10.2478/TAR-2018-0023
            129. Tahmasebi-Birgani Z, Solati-Hashjin M, Peirovi H,  et  al.,   139. Nulty A, 2022, A comparison of trueness and precision of 12
               2010, Layered double hydroxide: A new ceramid-based   3D printers used in dentistry. BDJ Open, 8(1):1–9.
               hemostatic agent?, in  Ceramic Transactions, vol. 218, R.   https://doi.org/10.1038/s41405-022-00108-6
               Narayan, M. Singh, and McKittrick, Eds. Wiley-American
               Ceramic Society, 53–57.                         140. Chae MP, Chung RD, Smith JA, et al., 2021, The accuracy
                                                                  of clinical 3D printing in reconstructive surgery: Literature
            130. Mahesh V, Joseph AS, Mahesh V, et al., 2021, Investigation   review and in vivo validation study. Gland Surg, 10(7): 2293.
               on the mechanical properties of additively manufactured
               PETG composites reinforced with OMMT nanoclay and   https://doi.org/10.21037/GS-21-264
               carbon fibers. Polym Compos, 42:2380–2395.      141. Ho Kim J, Pinhata-Baptista OH, Ayres AP,  et  al., 2022,
               https://doi.org/10.1002/pc.25985                   Accuracy comparison among 3D-printing technologies to
                                                                  produce dental models. Appl Sci, 12(8425):1–9.
            131.  Coppola B, Cappetti N, Di Maio L, et al., 2018, 3D printing of
               PLA/clay nanocomposites: Influence of printing temperature on   142. Nguyen PD, Nguyen TQ, Tao QB, et al., 2022, A data-driven
               printed samples properties. Materials (Basel), 11(1947):1–17.  machine learning approach for the 3D printing process
                                                                  optimisation. Virtual Phys Prototyp 17(4):768–786.
               https://doi.org/10.3390/ma11101947
                                                                  https://doi.org/10.1080/17452759.2022.2068446
            132. Paspali A, Bao Y, Gawne DT, et al., 2018, The influence of
               nanostructure on the mechanical properties of 3D printed   143. Gong X, Zeng D, Groeneveld-Meijer W, et al., 2022, Additive
               polylactide/nanoclay composites.  Compos Part B Eng,   manufacturing: A machine learning model of process-
               152:160–168.                                       structure-property linkages for machining behavior of Ti-
                                                                  6Al-4V. Mater Sci Addit Manuf, 1(1):6.
               https://doi.org/10.1016/j.compositesb.2018.07.005
            133. Adepu S, Luo H, Ramakrishna S, 2021, Heparin-tagged PLA-  https://doi.org/10.18063/MSAM.V1I1.6
               PEG  copolymer-encapsulated biochanin  A-loaded (Mg/Al)   144. Sing SL, Kuo CN, Shih CT, et al., 2021, Perspectives of using
               LDH nanoparticles recommended for non-thrombogenic   machine learning in laser powder bed fusion for metal
               and anti-proliferative stent coating.  Int J Mol Sci,    additive manufacturing. Virtual Phys Prototyp 16(3):372–386.
               22(11):5433.
                                                                  https://doi.org/10.1080/17452759.2021.1944229
               https://doi.org/10.3390/IJMS22115433/S1
                                                               145. Smolderen KG, Wang K, De Pouvourville G,  et  al., 2012,
            134. Xiao R, Huang WM, Xiao R, et al., 2020, Heating/solvent   Two-year  vascular  hospitalisation  rates  and  associated
               responsive shape-memory polymers for implant biomedical   costs in patients at risk of atherothrombosis in France and
               devices in minimally invasive surgery: Current status and   Germany:  Highest burden  for  peripheral arterial  disease.
               challenge. Macromol Biosci, 20(8):2000108.         Eur J Vasc Endovasc Surg, 43(2):198–207.
               https://doi.org/10.1002/MABI.202000108             https://doi.org/10.1016/J.EJVS.2011.09.016









            Volume 9 Issue 2 (2023)                        255                     https://doi.org/10.18063/ijb.v9i2.664
   258   259   260   261   262   263   264   265   266   267   268