Page 261 - IJB-9-2
P. 261
International Journal of Bioprinting Coronary and peripheral artery disease. State of the art.
83. Habib A, Finn AV, 2015, Endothelialization of drug eluting 93. Arabi H, Mirzadeh H, Ahmadi SH, et al., 2004, In vitro and
stents and its impact on dual anti-platelet therapy duration. in vivo hemocompatibility evaluation of graphite coated
Pharmacol Res, 93:22–27. polyester vascular grafts. Int J Artif Organs 27(8):691–698.
https://doi.org/10.1016/J.PHRS.2014.12.003 https://doi.org/10.1177/039139880402700807
84. Nguyen DT, Smith AF, Jiménez JM, 2021, Stent 94. Podila R, Moore T, Alexis F, et al., 2013, Graphene coatings
strut streamlining and thickness reduction promote for biomedical implants. J Vis Exp, 73(e50276):1–9.
endothelialization. J R Soc Interface, 18(181):1–14. https://doi.org/10.3791/50276
https://doi.org/10.1098/RSIF.2021.0023 95. Gao F, Hu Y, Li G, et al., 2020, Layer-by-layer deposition
85. Cabrera MS, Sanders B, Goor OLGM, et al., 2017, of bioactive layers on magnesium alloy stent materials to
Computationally designed 3D printed self-expandable improve corrosion resistance and biocompatibility. Bioact
polymer stents with biodegradation capacity for minimally Mater, 5(3):611–623.
invasive heart valve implantation: a proof-of-concept study. https://doi.org/10.1016/J.BIOACTMAT.2020.04.016
3D Print Addit Manuf, 4(1):19–29.
96. Yang MC, Tsou HM, Hsiao YS, et al., 2019, Electrochemical
https://doi.org/10.1089/3DP.2016.0052/ASSET/IMAGES/ polymerization of PEDOT-graphene oxide-heparin
LARGE/FIGURE8.JPEG composite coating for anti-fouling and anti-clotting of
86. Vellayappan MV, Balaji A, Subramanian AP, et al., 2015, cardiovascular stents. Polymers (Basel), 11(9):1–15.
Multifaceted prospects of nanocomposites for cardiovascular https://doi.org/10.3390/POLYM11091520
grafts and stents. Int J Nanomed, 10:2785–2803.
97. Alshebly YS, Nafea M, Mohamed Ali MS, et al., 2021,
https://doi.org/10.2147/IJN.S80121 Review on recent advances in 4D printing of shape memory
87. Chou TC, Fu E, Wu CJ, et al., 2003, Chitosan enhances polymers. Eur Polym J, 159:110708.
platelet adhesion and aggregation. Biochem Biophys Res https://doi.org/10.1016/J.EURPOLYMJ.2021.110708
Commun, 302(3):480–483.
98. Melocchi A, Uboldi M, Cerea M, et al., 2021, Shape
https://doi.org/10.1016/S0006-291X(03)00173-6 memory materials and 4D printing in pharmaceutics. Adv
88. Wickham AM, Islam MM, Mondal D, et al., 2014, Drug Deliv Rev, 173:216–237.
Polycaprolactone–thiophene-conjugated carbon nanotube https://doi.org/10.1016/J.ADDR.2021.03.013
meshes as scaffolds for cardiac progenitor cells. J Biomed
Mater Res Part B Appl Biomater, 102(7):1553–1561. 99. Xu J, Zhang Y, Feng YB, et al., 2018, Electromagnetic and
mechanical properties of carbonyl iron powder-filled methyl
https://doi.org/10.1002/JBM.B.33136 vinyl silicone rubber during thermal aging. Polym Compos,
89. Stout DA, Yoo J, Santiago-Miranda AN, et al., 2012, 39(8):2897–2903.
Mechanisms of greater cardiomyocyte functions on https://doi.org/10.1002/PC.24286
conductive nanoengineered composites for cardiovascular
application. Int J Nanomed, 7:5653–5669. 100. Waksman R, Pakala R, Baffour R, et al., 2008, Short-term
effects of biocorrodible iron stents in porcine coronary
https://doi.org/10.2147/IJN.S34574 arteries. J Interv Cardiol, 21(1):15–20.
90. Mattioli-Belmonte M, Vozzi G, Whulanza Y, et al., 2012, https://doi.org/10.1111/J.1540-8183.2007.00319.X
Tuning polycaprolactone–carbon nanotube composites
for bone tissue engineering scaffolds. Mater Sci Eng C, 101. Peuster M, Hesse C, Schloo T, et al., 2006, Long-term
32(2):152–159. biocompatibility of a corrodible peripheral iron stent in the
porcine descending aorta. Biomaterials, 27(28):4955–4962.
https://doi.org/10.1016/J.MSEC.2011.10.010
https://doi.org/10.1016/J.BIOMATERIALS.2006.05.029
91. Chakoli AN, Wan J, Feng JT, et al., 2009, Functionalization
of multiwalled carbon nanotubes for reinforcing of poly(l- 102. Peuster M, Wohlsein P, Brügmann M, et al., 2001, A novel
lactide-co-ε-caprolactone) biodegradable copolymers. Appl approach to temporary stenting: Degradable cardiovascular
Surf Sci, 256(1):170–177. stents produced from corrodible metal-results 6-18 months
after implantation into New Zealand white rabbits. Heart,
https://doi.org/10.1016/J.APSUSC.2009.07.103
86(5):563–569.
92. Lee HH, Shin US, Jin GZ, et al., 2011, Highly homogeneous
carbon nanotube-polycaprolactone composites with various https://doi.org/10.1136/HEART.86.5.563
and controllable concentrations of ionically-modified- 103. Liu B, Zheng YF, 2011, Effects of alloying elements (Mn,
MWCNTs. Bull Korean Chem Soc, 32(1):157–161. Co, Al, W, Sn, B, C and S) on biodegradability and in vitro
biocompatibility of pure iron. Acta Biomater, 7(3):1407–1420.
https://doi.org/10.5012/BKCS.2011.32.1.157
https://doi.org/10.1016/J.ACTBIO.2010.11.001
Volume 9 Issue 2 (2023) 253 https://doi.org/10.18063/ijb.v9i2.664

