Page 261 - IJB-9-2
P. 261

International Journal of Bioprinting                      Coronary and peripheral artery disease. State of the art.



            83.  Habib A, Finn AV, 2015, Endothelialization of drug eluting   93.  Arabi H, Mirzadeh H, Ahmadi SH, et al., 2004, In vitro and
               stents and its impact on dual anti-platelet therapy duration.   in vivo hemocompatibility evaluation of graphite coated
               Pharmacol Res, 93:22–27.                           polyester vascular grafts. Int J Artif Organs 27(8):691–698.
               https://doi.org/10.1016/J.PHRS.2014.12.003         https://doi.org/10.1177/039139880402700807
            84.  Nguyen DT, Smith AF,  Jiménez  JM, 2021, Stent   94.  Podila R, Moore T, Alexis F, et al., 2013, Graphene coatings
               strut streamlining and thickness reduction promote   for biomedical implants. J Vis Exp, 73(e50276):1–9.
               endothelialization. J R Soc Interface, 18(181):1–14.  https://doi.org/10.3791/50276
               https://doi.org/10.1098/RSIF.2021.0023          95.  Gao F, Hu Y, Li G, et al., 2020, Layer-by-layer deposition
            85.  Cabrera MS, Sanders B, Goor OLGM,  et  al., 2017,   of bioactive layers on magnesium alloy stent materials to
               Computationally designed 3D printed self-expandable   improve corrosion resistance and biocompatibility.  Bioact
               polymer stents with biodegradation capacity for minimally   Mater, 5(3):611–623.
               invasive heart valve implantation: a proof-of-concept study.   https://doi.org/10.1016/J.BIOACTMAT.2020.04.016
               3D Print Addit Manuf, 4(1):19–29.
                                                               96.  Yang MC, Tsou HM, Hsiao YS, et al., 2019, Electrochemical
               https://doi.org/10.1089/3DP.2016.0052/ASSET/IMAGES/  polymerization  of  PEDOT-graphene  oxide-heparin
               LARGE/FIGURE8.JPEG                                 composite  coating  for  anti-fouling  and  anti-clotting of
            86.  Vellayappan MV, Balaji A, Subramanian AP,  et  al., 2015,   cardiovascular stents. Polymers (Basel), 11(9):1–15.
               Multifaceted prospects of nanocomposites for cardiovascular   https://doi.org/10.3390/POLYM11091520
               grafts and stents. Int J Nanomed, 10:2785–2803.
                                                               97.  Alshebly YS, Nafea M, Mohamed Ali MS,  et  al., 2021,
               https://doi.org/10.2147/IJN.S80121                 Review on recent advances in 4D printing of shape memory
            87.  Chou TC, Fu E, Wu CJ,  et  al., 2003, Chitosan enhances   polymers. Eur Polym J, 159:110708.
               platelet adhesion and aggregation.  Biochem Biophys Res   https://doi.org/10.1016/J.EURPOLYMJ.2021.110708
               Commun, 302(3):480–483.
                                                               98.  Melocchi A, Uboldi M, Cerea M,  et  al., 2021, Shape
               https://doi.org/10.1016/S0006-291X(03)00173-6      memory materials and 4D printing in pharmaceutics. Adv
            88.  Wickham  AM, Islam MM,  Mondal D,  et  al., 2014,   Drug Deliv Rev, 173:216–237.
               Polycaprolactone–thiophene-conjugated  carbon  nanotube   https://doi.org/10.1016/J.ADDR.2021.03.013
               meshes as scaffolds for cardiac progenitor cells.  J Biomed
               Mater Res Part B Appl Biomater, 102(7):1553–1561.  99.  Xu J, Zhang Y, Feng YB, et al., 2018, Electromagnetic and
                                                                  mechanical properties of carbonyl iron powder-filled methyl
               https://doi.org/10.1002/JBM.B.33136                vinyl silicone rubber during thermal aging. Polym Compos,
            89.  Stout DA, Yoo J, Santiago-Miranda AN,  et  al., 2012,   39(8):2897–2903.
               Mechanisms of greater cardiomyocyte functions on   https://doi.org/10.1002/PC.24286
               conductive nanoengineered composites for cardiovascular
               application. Int J Nanomed, 7:5653–5669.        100. Waksman R, Pakala R, Baffour R, et al., 2008, Short-term
                                                                  effects of biocorrodible iron stents in porcine coronary
               https://doi.org/10.2147/IJN.S34574                 arteries. J Interv Cardiol, 21(1):15–20.
            90.  Mattioli-Belmonte  M, Vozzi  G, Whulanza  Y,  et  al., 2012,   https://doi.org/10.1111/J.1540-8183.2007.00319.X
               Tuning polycaprolactone–carbon nanotube composites
               for bone tissue engineering scaffolds.  Mater Sci Eng C,   101. Peuster  M,  Hesse  C,  Schloo  T,  et  al.,  2006,  Long-term
               32(2):152–159.                                     biocompatibility of a corrodible peripheral iron stent in the
                                                                  porcine descending aorta. Biomaterials, 27(28):4955–4962.
               https://doi.org/10.1016/J.MSEC.2011.10.010
                                                                  https://doi.org/10.1016/J.BIOMATERIALS.2006.05.029
            91.  Chakoli AN, Wan J, Feng JT, et al., 2009, Functionalization
               of multiwalled carbon nanotubes for reinforcing of poly(l-  102. Peuster M, Wohlsein P, Brügmann M, et al., 2001, A novel
               lactide-co-ε-caprolactone) biodegradable copolymers. Appl   approach to temporary stenting: Degradable cardiovascular
               Surf Sci, 256(1):170–177.                          stents produced from corrodible metal-results 6-18 months
                                                                  after implantation into New Zealand white rabbits. Heart,
               https://doi.org/10.1016/J.APSUSC.2009.07.103
                                                                  86(5):563–569.
            92.  Lee HH, Shin US, Jin GZ, et al., 2011, Highly homogeneous
               carbon nanotube-polycaprolactone composites with various   https://doi.org/10.1136/HEART.86.5.563
               and controllable  concentrations of  ionically-modified-  103. Liu B, Zheng YF, 2011, Effects of alloying elements (Mn,
               MWCNTs. Bull Korean Chem Soc, 32(1):157–161.       Co, Al, W, Sn, B, C and S) on biodegradability and in vitro
                                                                  biocompatibility of pure iron. Acta Biomater, 7(3):1407–1420.
               https://doi.org/10.5012/BKCS.2011.32.1.157
                                                                  https://doi.org/10.1016/J.ACTBIO.2010.11.001


            Volume 9 Issue 2 (2023)                        253                     https://doi.org/10.18063/ijb.v9i2.664
   256   257   258   259   260   261   262   263   264   265   266