Page 471 - IJB-9-2
P. 471

International Journal of Bioprinting                                            Bioprinting of exosomes



            12.  Tavasolian F, Moghaddam AS, Rohani F,  et  al., 2020,   23.  Elsharkasy OM, Nordin JZ, Hagey DW,  et al., 2020,
               Exosomes: Effectual players in rheumatoid arthritis.   Extracellular  vesicles as  drug delivery  systems: Why and
               Autoimmun Rev, 19: 102511.                         how? Adv Drug Deliv Rev, 159: 332–343.
               https://doi.org/10.1016/j.autrev.2020.102511       https://doi.org/10.1016/j.addr.2020.04.004
            13.  Phinney DG, Pittenger MF, 2017, Concise review: MSC-  24.  Arrighetti N, Corbo C, Evangelopoulos M,  et al., 2019,
               derived exosomes for cell-free therapy. Stem Cells, 35: 851–858.  Exosome-like nanovectors for drug delivery in cancer. Curr
                                                                  Med Chem, 26: 6132–6148.
               https://doi.org/10.1002/stem.2575
                                                                  https://doi.org/10.2174/0929867325666180831150259
            14.  Perocheau D, Touramanidou L, Gurung S,  et al., 2021,
               Clinical applications for exosomes: Are we there yet? Br J   25.  Zhang B, Wang M, Gong A, et al., 2015, HucMSC-exosome
               Pharmacol, 178: 2375–2392.                         mediated-Wnt4 signaling is required for cutaneous wound
                                                                  healing. Stem Cells, 33: 2158–2168.
               https://doi.org/10.1111/bph.15432
                                                                  https://doi.org/10.1002/stem.1771
            15.  Baran J, Baj-Krzyworzeka M, Weglarczyk K,  et al., 2010,
               Circulating tumour-derived microvesicles in plasma of   26.  Shabbir A, Cox A, Rodriguez-Menocal L,  et  al., 2015,
               gastric cancer patients.  Cancer Immunol Immunother, 59:   Mesenchymal stem cell exosomes induce proliferation and
               841–850.                                           migration of normal and chronic wound fibroblasts, and
                                                                  enhance angiogenesis in vitro. Stem Cells Dev, 24: 1635–1647.
               https://doi.org/10.1007/s00262-009-0808-2
                                                                  https://doi.org/10.1089/scd.2014.0316
            16.  Bebelman MP, Janssen E, Pegtel DM, et al., 2021, The forces
               driving cancer extracellular vesicle secretion. Neoplasia, 23:   27.  Geiger A, Walker A, Nissen E, 2015, Human fibrocyte-
               149–157.                                           derived exosomes accelerate wound healing in genetically
                                                                  diabetic mice. Biochem Biophys Res Commun, 467: 303–309.
               https://doi.org/10.1016/j.neo.2020.11.011
                                                                  https://doi.org/10.1016/j.bbrc.2015.09.166
            17.  Whiteside TL, 2017, Exosomes carrying immunoinhibitory
               proteins and their role in cancer. Clin Exp Immunol, 189:   28.  Moghaddam AS, Afshari JT, Esmaeili S-A,  et al., 2019,
               259–267.                                           Cardioprotective microRNAs: Lessons from stem cell-
                                                                  derived exosomal microRNAs to treat cardiovascular
               https://doi.org/10.1111/cei.12974                  disease. Atherosclerosis, 285: 1–9.
            18.  Mohammadi MR, Rodriguez SM, Luong JC,  et al., 2021,   https://doi.org/10.1016/j.atherosclerosis.2019.03.016
               Exosome loaded immunomodulatory biomaterials alleviate   29.  Wang Y, Zhang Q, Yang G, et al., 2021, RPE-derived exosomes
               local immune response in immunocompetent diabetic mice   rescue the photoreceptors during retina degeneration: An
               post islet xenotransplantation. Commun Biol, 4: 685.  intraocular approach to deliver exosomes into the subretinal
               https://doi.org/10.1038/s42003-021-02229-4         space. Drug Deliv, 28: 218–228.
            19.  Fan L, Guan P, Xiao C,  et al., 2021, Exosome-   https://doi.org/10.1080/10717544.2020.1870584
               functionalized polyetheretherketone-based implant with   30.  Yu B, Shao H, Su C, et al., 2016, Exosomes derived from
               immunomodulatory property for enhancing osseointegration.   MSCs ameliorate retinal laser injury partially by inhibition
               Bioact Mater, 6: 2754–2766.                        of MCP-1. Sci Rep, 6: 34562.
               https://doi.org/10.1016/j.bioactmat.2021.02.005    https://doi.org/10.1038/srep34562
            20.  Liang Y, Duan L, Lu J, et al., 2021, Engineering exosomes for   31.  Doeppner TR, Herz J, Görgens A, et al., 2015, Extracellular
               targeted drug delivery. Theranostics, 11: 3183–3195.  vesicles improve post-stroke neuroregeneration and prevent
               https://doi.org/10.7150/thno.52570                 postischemic immunosuppression. Stem Cells Transl Med, 4:
                                                                  1131–1143.
            21.  Vonk  LA,  van  Dooremalen  SFJ,  Liv  N,  et al.,  2018,
               Mesenchymal stromal/stem cell-derived extracellular   https://doi.org/10.5966/sctm.2015-0078
               vesicles promote human cartilage regeneration in vitro.   32.  Kang M, Huang CC, Lu Y, et al., 2020, Bone regeneration
               Theranostics, 8: 906–920.                          is mediated by macrophage extracellular vesicles. Bone, 141:
               https://doi.org/10.7150/thno.20746                 115627.
            22.  Xia B, Gao J, Li S, et al., 2020, Mechanical stimulation of   https://doi.org/10.1016/j.bone.2020.115627
               Schwann cells promote peripheral nerve regeneration via   33.  Zhou M, Li B, Liu C, et al., 2021, M2 Macrophage-derived
               extracellular vesicle-mediated transfer of microRNA 23b-  exosomal  miR-501  contributes  to  pubococcygeal  muscle
               3p. Theranostics, 10: 8974–8995.                   regeneration. Int Immunopharmacol, 101: 108223.
               https://doi.org/10.7150/thno.44912                 https://doi.org/10.1016/j.intimp.2021.108223



            Volume 9 Issue 2 (2023)                        463                          https://doi.org/10.18063/ijb.690
   466   467   468   469   470   471   472   473   474   475   476