Page 110 - IJB-9-3
P. 110
International Journal of Bioprinting The biological properties of WE43 scaffolds via the oxidative heat strategy
Acknowledgments 4. Kani KK, Porrino JA, Chew FS, 2020, External fixators:
Looking beyond the hardware maze. Skelet Radiol,
None. 49(3):359–374.
Funding https://doi.org/10.1007/s00256-019-03306-w
5. Yi-Wu J, Hsieh CH, Lin ZY, 2022, Novel high-speed
This work was funded by the National Key Research and 3D printing method using selective oil sintering with
Development Program of China (2018YFE0104200), the thermoplastic polyurethane powder printing. Int J Bioprint,
Youth Innovation Promotion Association CAS (2019031), 8(2):521.
and the National Natural Science Foundation of China
(51875310, 52175274, 82172065). https://doi.org/10.18063/ijb.v8i2.521
6. Yin C, Zhang T, Wei Q, et al., 2022, Surface treatment
Conflict of interest of 3D printed porous Ti6Al4V implants by ultraviolet
photofunctionalization for improved osseointegration.
The authors declare no conflicts of interest. Bioactive Mater, 7:26–38.
Author contributions https://doi.org/10.1016/j.bioactmat.2021.05.043
7. Kadakia RJ, Wixted CM, Allen NB, et al., 2020, Clinical
Conceptualization: Yufeng Zheng, Peng Wen, Yun Tian applications of custom 3D printed implants in complex
Data curation: Shuyuan Min, Chaoxin Wang lower extremity reconstruction. 3D Print Med, 6(1):29.
Formal analysis: Shuyuan Min, Chaoxin Wang
Methodology: Shuyuan Min https://doi.org/10.1186/s41205-020-00083-4
Investigation: Shuyuan Min, Chaoxin Wang, Bingchuan 8. Deng F, Liu L, Li Z, et al., 2021, 3D printed Ti6Al4V bone
Liu, Jinge Liu, Yu Liu, Zehao Jing scaffolds with different pore structure effects on bone
Project administration: Yufeng Zheng, Peng Wen, Yun Tian ingrowth. J Biol Eng, 15(1):4.
Supervision: Yun Tian https://doi.org/10.1186/s13036-021-00255-8
Validation: Yun Tian
Writing – original draft: Shuyuan Min, Chaoxin Wang 9. Sumner DR, 2015, Long-term implant fixation and stress-
Writing – review & editing: Yan Cheng, Yufeng Zheng, shielding in total hip replacement. J Biomech, 48(5):797-800.
Peng Wen, Xing Wang, Yun Tian https://doi.org/10.1016/j.jbiomech.2014.12.021
10. Biber R, Pauser J, Gesslein M, et al., 2016, Magnesium-based
Ethics approval and consent to participate absorbable metal screws for intra-articular fracture fixation.
Not applicable. Case Rep Orthop, 2016:9673174.
https://doi.org/10.1155/2016/9673174
Consent for publication
11. Leem YH, Lee KS, Kim JH, et al., 2016, Magnesium ions
Not applicable. facilitate integrin alpha 2- and alpha 3-mediated proliferation
and enhance alkaline phosphatase expression and activity in
Availability of data hBMSCs. J Tissue Eng Regen Med, 10(10):E527–E536.
Not applicable. https://doi.org/10.1002/term.1861
12. Chen K, Xie X, Tang H, et al., 2020, In vitro and in vivo
References degradation behavior of Mg-2Sr-Ca and Mg-2Sr-Zn alloys.
Bioact Mater, 5(2):275–285.
1. Archunan MW, Petronis S, 2021, Bone grafts in trauma and https://doi.org/10.1016/j.bioactmat.2020.02.014
orthopaedics. Cureus, 13(9):e17705.
13. Xia D, Liu Y, Wang S, et al., 2018, In vitro and in vivo
https://doi.org/10.7759/cureus.17705 investigation on biodegradable Mg-Li-Ca alloys for bone
2. Grambart ST, Anderson DS, Anderson TD, 2020, Bone implant application. Sci China Mater, 62(2):256–272.
grafting options. Clin Podiatr Med Surg, 37(3):593–600.
https://doi.org/10.1007/s40843-018-9293-8
https://doi.org/10.1016/j.cpm.2020.03.012
14. Li Z, Gu X, Lou S, et al., 2008, The development of binary
3. Šupová M, 2015, Substituted hydroxyapatites for biomedical Mg–Ca alloys for use as biodegradable materials within
applications: A review. Ceram Int, 41(8):9203–9231. bone. Biomaterials, 29(10):1329–1344.
https://doi.org/10.1016/j.ceramint.2015.03.316 https://doi.org/10.1016/j.biomaterials.2007.12.021
Volume 9 Issue 3 (2023) 102 https://doi.org/10.18063/ijb.686

