Page 110 - IJB-9-3
P. 110

International Journal of Bioprinting         The biological properties of WE43 scaffolds via the oxidative heat strategy



            Acknowledgments                                    4.   Kani KK, Porrino JA, Chew FS, 2020, External fixators:
                                                                  Looking  beyond  the hardware maze.  Skelet Radiol,
            None.                                                 49(3):359–374.

            Funding                                               https://doi.org/10.1007/s00256-019-03306-w
                                                               5.   Yi-Wu  J,  Hsieh  CH,  Lin  ZY, 2022,  Novel  high-speed
            This work was funded by the National Key Research and   3D printing method using selective oil sintering with
            Development Program of China (2018YFE0104200), the    thermoplastic polyurethane powder printing. Int J Bioprint,
            Youth Innovation Promotion Association CAS (2019031),   8(2):521.
            and the National Natural Science Foundation of China
            (51875310, 52175274, 82172065).                       https://doi.org/10.18063/ijb.v8i2.521
                                                               6.   Yin C, Zhang T, Wei Q, et al., 2022, Surface treatment
            Conflict of interest                                  of 3D printed porous Ti6Al4V implants by ultraviolet
                                                                  photofunctionalization for improved osseointegration.
            The authors declare no conflicts of interest.         Bioactive Mater, 7:26–38.

            Author contributions                                  https://doi.org/10.1016/j.bioactmat.2021.05.043
                                                               7.   Kadakia RJ, Wixted CM, Allen NB, et al., 2020, Clinical
            Conceptualization: Yufeng Zheng, Peng Wen, Yun Tian   applications of custom 3D printed implants in complex
            Data curation: Shuyuan Min, Chaoxin Wang              lower extremity reconstruction. 3D Print Med, 6(1):29.
            Formal analysis: Shuyuan Min, Chaoxin Wang
            Methodology: Shuyuan Min                              https://doi.org/10.1186/s41205-020-00083-4
            Investigation: Shuyuan Min, Chaoxin Wang, Bingchuan   8.   Deng F, Liu L, Li Z, et al., 2021, 3D printed Ti6Al4V bone
               Liu, Jinge Liu, Yu Liu, Zehao Jing                 scaffolds with different pore structure effects on bone
            Project administration: Yufeng Zheng, Peng Wen, Yun Tian  ingrowth. J Biol Eng, 15(1):4.
            Supervision: Yun Tian                                 https://doi.org/10.1186/s13036-021-00255-8
            Validation: Yun Tian
            Writing – original draft: Shuyuan Min, Chaoxin Wang  9.   Sumner DR, 2015, Long-term implant fixation and stress-
            Writing  –  review  &  editing:  Yan Cheng, Yufeng  Zheng,   shielding in total hip replacement. J Biomech, 48(5):797-800.
               Peng Wen, Xing Wang, Yun Tian                      https://doi.org/10.1016/j.jbiomech.2014.12.021
                                                               10.  Biber R, Pauser J, Gesslein M, et al., 2016, Magnesium-based
            Ethics approval and consent to participate            absorbable metal screws for intra-articular fracture fixation.
            Not applicable.                                       Case Rep Orthop, 2016:9673174.
                                                                  https://doi.org/10.1155/2016/9673174
            Consent for publication
                                                               11.  Leem YH, Lee KS, Kim JH, et al., 2016, Magnesium ions
            Not applicable.                                       facilitate integrin alpha 2- and alpha 3-mediated proliferation
                                                                  and enhance alkaline phosphatase expression and activity in
            Availability of data                                  hBMSCs. J Tissue Eng Regen Med, 10(10):E527–E536.
            Not applicable.                                       https://doi.org/10.1002/term.1861
                                                               12.  Chen K, Xie X, Tang H, et al., 2020, In vitro and in vivo
            References                                            degradation behavior of Mg-2Sr-Ca and Mg-2Sr-Zn alloys.
                                                                  Bioact Mater, 5(2):275–285.
            1.   Archunan MW, Petronis S, 2021, Bone grafts in trauma and   https://doi.org/10.1016/j.bioactmat.2020.02.014
               orthopaedics. Cureus, 13(9):e17705.
                                                               13.  Xia D, Liu Y, Wang S, et al., 2018, In vitro and in vivo
               https://doi.org/10.7759/cureus.17705               investigation on  biodegradable  Mg-Li-Ca alloys for  bone
            2.   Grambart ST, Anderson DS, Anderson TD, 2020, Bone   implant application. Sci China Mater, 62(2):256–272.
               grafting options. Clin Podiatr Med Surg, 37(3):593–600.
                                                                  https://doi.org/10.1007/s40843-018-9293-8
               https://doi.org/10.1016/j.cpm.2020.03.012
                                                               14.  Li Z, Gu X, Lou S, et al., 2008, The development of binary
            3.   Šupová M, 2015, Substituted hydroxyapatites for biomedical   Mg–Ca  alloys for use as  biodegradable  materials within
               applications: A review. Ceram Int, 41(8):9203–9231.  bone. Biomaterials, 29(10):1329–1344.
               https://doi.org/10.1016/j.ceramint.2015.03.316     https://doi.org/10.1016/j.biomaterials.2007.12.021




            Volume 9 Issue 3 (2023)                        102                         https://doi.org/10.18063/ijb.686
   105   106   107   108   109   110   111   112   113   114   115