Page 111 - IJB-9-3
P. 111

International Journal of Bioprinting         The biological properties of WE43 scaffolds via the oxidative heat strategy



            15.  He LY, Zhang XM, Liu B, et al., 2016, Effect of magnesium   26.  Feyerabend F, Fischer J, Holtz J, et al., 2010, Evaluation of
               ion on human osteoblast activity. Braz J Med Biol Res, 49(7):   short-term effects of rare earth and other elements used
               e5257.                                             in magnesium alloys on primary cells and cell lines. Acta
                                                                  Biomater, 6(5):1834–1842.
               https://doi.org/10.1590/1414-431X20165257
                                                                  https://doi.org/10.1016/j.actbio.2009.09.024
            16.  Yang Y, He C, Dianyu E, et al., 2020, Mg bone implant: Features,
               developments and perspectives. Mater Design, 185:108259.  27.  Li F, Gong A, Qiu L, et al., 2017, Simultaneous determination
                                                                  of trace rare-earth elements in simulated water samples
               https://doi.org/10.1016/j.matdes.2019.108259
                                                                  using ICP-OES with TODGA extraction/back-extraction.
            17.  Jiang Q, Lu D, Liu C, et al., 2021, The Pilling-Bedworth ratio   PLoS One, 12(9):e0185302.
               of oxides formed from the precipitated phases in magnesium   https://doi.org/10.1371/journal.pone.0185302
               alloys. Front Mater, 8:761052.
                                                               28.  Vimalraj S, 2020, Alkaline phosphatase: Structure,
               https://doi.org/10.3389/fmats.2021.761052
                                                                  expression and its function in bone mineralization. Gene,
            18.  Kim YM, Yim CD, Kim HS, et al., 2011, Key factor   754:144855.
               influencing the ignition resistance of magnesium alloys at   https://doi.org/10.1016/j.gene.2020.144855
               elevated temperatures. Script Mater, 65(11):958–961.
                                                               29.  Prins HJ, Braat AK, Gawlitta D, et al., 2014, In vitro induction
               https://doi.org/10.1016/j.scriptamat.2011.08.019   of alkaline phosphatase levels predicts in vivo bone forming
            19.  Wu Y, Wang YM, Zhao DW, et al., 2019, In vivo study of   capacity of human bone marrow stromal cells. Stem Cell Res,
               microarc oxidation coated Mg alloy as a substitute for bone   12(2):428–440.
               defect repairing: Degradation behavior, mechanical properties,   https://doi.org/10.1016/j.scr.2013.12.001
               and bone response. Colloids Surf B Biointerfaces, 181:349–359.
                                                               30.  Dubey N, Bentini R, Islam I, et al., 2015, Graphene: A
               https://doi.org/10.1016/j.colsurfb.2019.05.052     versatile carbon-based material for bone tissue engineering.
            20.  Lalk M, Reifenrath J, Angrisani N, et al., 2013, Fluoride and   Stem Cells Int, 2015:804213.
               calcium-phosphate coated sponges of the magnesium alloy   https://doi.org/10.1155/2015/804213
               AX30 as bone grafts: A comparative study in rabbits. J Mater
               Sci Mater Med, 24(2):417–436.                   31.  Komori T, 2009, Regulation of osteoblast differentiation by
                                                                  Runx2. Osteoimmunology. Adv Exp Med Biol, 658:43–49.
               https://doi.org/10.1007/s10856-012-4812-2
                                                               32.  Arumugam B, Vishal M, Shreya S, et al., 2019, Parathyroid
            21.  Liu J, Yin B, Song F, et al., 2022, Improving corrosion   hormone-stimulation  of  Runx2  during  osteoblast
               resistance of additively manufactured WE43 magnesium   differentiation  via  the  regulation  of  lnc-SUPT3H-1:16
               alloy  by  high  temperature oxidation  for  biodegradable   (RUNX2-AS1:32) and miR-6797-5p. Biochimie, 158:43-52.
               applications. J Magnes Alloys.
                                                                  https://doi.org/10.1016/j.biochi.2018.12.006
               https://doi.org/10.1016/j.jma.2022.08.009
                                                               33.  Qiao  M,  Shapiro  P,  Fosbrink  M, et al.,  2006,  Cell  cycle-
            22.  Bar F, Berger L, Jauer L, et al., 2019, Laser additive   dependent phosphorylation of the RUNX2 transcription
               manufacturing of biodegradable magnesium alloy WE43: A   factor by cdc2 regulates endothelial cell proliferation. J Biol
               detailed microstructure analysis. Acta Biomater, 98:36–49.  Chem, 281(11):7118–7128.
               https://doi.org/10.1016/j.actbio.2019.05.056       https://doi.org/10.1074/jbc.M508162200
            23.  Liu J, Liu B, Min S, et al., 2022, Biodegradable magnesium   34.  San Martin IA, Varela N, Gaete M, et al., 2009, Impaired
               alloy WE43 porous scaffolds fabricated by laser powder bed   cell cycle regulation of the osteoblast-related heterodimeric
               fusion for orthopedic applications: Process optimization, in   transcription factor Runx2-Cbfbeta in osteosarcoma cells.
               vitro and in vivo investigation. Bioact Mater, 16:301–319.  J Cell Physiol, 221(3):560–571.
               https://doi.org/10.1016/j.bioactmat.2022.02.020    https://doi.org/10.1002/jcp.21894
            24.  Zhang Q, Li Q, Chen X, 2020, Effect of heat treatment on   35.  Galindo M, Pratap J, Young DW, et al., 2005, The bone-
               corrosion behavior of Mg–5Gd–3Y–0.5Zr alloy. RSC Adv,   specific expression of Runx2 oscillates during the cell
               10(71):43371–43382.                                cycle to support a G1-related antiproliferative function in
               https://doi.org/10.1039/d0ra08933h                 osteoblasts. J Biol Chem, 280(21):20274–20285.
            25.  Lu WC, Pringa E, Chou L, 2017, Effect of magnesium on   https://doi.org/10.1074/jbc.M413665200
               the osteogenesis of normal human osteoblasts. Magnes Res,   36.  Sinha KM, Zhou X, 2013, Genetic and molecular control of
               30(2):42–52.                                       osterix in skeletal formation. J Cell Biochem, 114(5):975–984.
               https://doi.org/10.1684/mrh.2017.0422              https://doi.org/10.1002/jcb.24439



            Volume 9 Issue 3 (2023)                        103                         https://doi.org/10.18063/ijb.686
   106   107   108   109   110   111   112   113   114   115   116