Page 111 - IJB-9-3
P. 111
International Journal of Bioprinting The biological properties of WE43 scaffolds via the oxidative heat strategy
15. He LY, Zhang XM, Liu B, et al., 2016, Effect of magnesium 26. Feyerabend F, Fischer J, Holtz J, et al., 2010, Evaluation of
ion on human osteoblast activity. Braz J Med Biol Res, 49(7): short-term effects of rare earth and other elements used
e5257. in magnesium alloys on primary cells and cell lines. Acta
Biomater, 6(5):1834–1842.
https://doi.org/10.1590/1414-431X20165257
https://doi.org/10.1016/j.actbio.2009.09.024
16. Yang Y, He C, Dianyu E, et al., 2020, Mg bone implant: Features,
developments and perspectives. Mater Design, 185:108259. 27. Li F, Gong A, Qiu L, et al., 2017, Simultaneous determination
of trace rare-earth elements in simulated water samples
https://doi.org/10.1016/j.matdes.2019.108259
using ICP-OES with TODGA extraction/back-extraction.
17. Jiang Q, Lu D, Liu C, et al., 2021, The Pilling-Bedworth ratio PLoS One, 12(9):e0185302.
of oxides formed from the precipitated phases in magnesium https://doi.org/10.1371/journal.pone.0185302
alloys. Front Mater, 8:761052.
28. Vimalraj S, 2020, Alkaline phosphatase: Structure,
https://doi.org/10.3389/fmats.2021.761052
expression and its function in bone mineralization. Gene,
18. Kim YM, Yim CD, Kim HS, et al., 2011, Key factor 754:144855.
influencing the ignition resistance of magnesium alloys at https://doi.org/10.1016/j.gene.2020.144855
elevated temperatures. Script Mater, 65(11):958–961.
29. Prins HJ, Braat AK, Gawlitta D, et al., 2014, In vitro induction
https://doi.org/10.1016/j.scriptamat.2011.08.019 of alkaline phosphatase levels predicts in vivo bone forming
19. Wu Y, Wang YM, Zhao DW, et al., 2019, In vivo study of capacity of human bone marrow stromal cells. Stem Cell Res,
microarc oxidation coated Mg alloy as a substitute for bone 12(2):428–440.
defect repairing: Degradation behavior, mechanical properties, https://doi.org/10.1016/j.scr.2013.12.001
and bone response. Colloids Surf B Biointerfaces, 181:349–359.
30. Dubey N, Bentini R, Islam I, et al., 2015, Graphene: A
https://doi.org/10.1016/j.colsurfb.2019.05.052 versatile carbon-based material for bone tissue engineering.
20. Lalk M, Reifenrath J, Angrisani N, et al., 2013, Fluoride and Stem Cells Int, 2015:804213.
calcium-phosphate coated sponges of the magnesium alloy https://doi.org/10.1155/2015/804213
AX30 as bone grafts: A comparative study in rabbits. J Mater
Sci Mater Med, 24(2):417–436. 31. Komori T, 2009, Regulation of osteoblast differentiation by
Runx2. Osteoimmunology. Adv Exp Med Biol, 658:43–49.
https://doi.org/10.1007/s10856-012-4812-2
32. Arumugam B, Vishal M, Shreya S, et al., 2019, Parathyroid
21. Liu J, Yin B, Song F, et al., 2022, Improving corrosion hormone-stimulation of Runx2 during osteoblast
resistance of additively manufactured WE43 magnesium differentiation via the regulation of lnc-SUPT3H-1:16
alloy by high temperature oxidation for biodegradable (RUNX2-AS1:32) and miR-6797-5p. Biochimie, 158:43-52.
applications. J Magnes Alloys.
https://doi.org/10.1016/j.biochi.2018.12.006
https://doi.org/10.1016/j.jma.2022.08.009
33. Qiao M, Shapiro P, Fosbrink M, et al., 2006, Cell cycle-
22. Bar F, Berger L, Jauer L, et al., 2019, Laser additive dependent phosphorylation of the RUNX2 transcription
manufacturing of biodegradable magnesium alloy WE43: A factor by cdc2 regulates endothelial cell proliferation. J Biol
detailed microstructure analysis. Acta Biomater, 98:36–49. Chem, 281(11):7118–7128.
https://doi.org/10.1016/j.actbio.2019.05.056 https://doi.org/10.1074/jbc.M508162200
23. Liu J, Liu B, Min S, et al., 2022, Biodegradable magnesium 34. San Martin IA, Varela N, Gaete M, et al., 2009, Impaired
alloy WE43 porous scaffolds fabricated by laser powder bed cell cycle regulation of the osteoblast-related heterodimeric
fusion for orthopedic applications: Process optimization, in transcription factor Runx2-Cbfbeta in osteosarcoma cells.
vitro and in vivo investigation. Bioact Mater, 16:301–319. J Cell Physiol, 221(3):560–571.
https://doi.org/10.1016/j.bioactmat.2022.02.020 https://doi.org/10.1002/jcp.21894
24. Zhang Q, Li Q, Chen X, 2020, Effect of heat treatment on 35. Galindo M, Pratap J, Young DW, et al., 2005, The bone-
corrosion behavior of Mg–5Gd–3Y–0.5Zr alloy. RSC Adv, specific expression of Runx2 oscillates during the cell
10(71):43371–43382. cycle to support a G1-related antiproliferative function in
https://doi.org/10.1039/d0ra08933h osteoblasts. J Biol Chem, 280(21):20274–20285.
25. Lu WC, Pringa E, Chou L, 2017, Effect of magnesium on https://doi.org/10.1074/jbc.M413665200
the osteogenesis of normal human osteoblasts. Magnes Res, 36. Sinha KM, Zhou X, 2013, Genetic and molecular control of
30(2):42–52. osterix in skeletal formation. J Cell Biochem, 114(5):975–984.
https://doi.org/10.1684/mrh.2017.0422 https://doi.org/10.1002/jcb.24439
Volume 9 Issue 3 (2023) 103 https://doi.org/10.18063/ijb.686

