Page 126 - IJB-9-3
P. 126

International Journal of Bioprinting                                      OMT-loaded spinal cord scaffold



               neuronal differentiation and locomotion recovery in spinal   migration of neural stem cells after spinal cord injury.
               cord injury. NPJ Regen Med, 5(1):12.               Biomaterials, 269:120479.
               https://doi.org/10.1038/s41536-020-0097-0          https://doi.org/10.1016/j.biomaterials.2020.120479
            42.  Sever Bahcekapili M, Yilmaz C, Demirel A,  et al., 2021,   52.  Li X, Fan C, Xiao Z, et al., 2018, A collagen microchannel
               Neuroactive  peptide  nanofibers  for  regeneration of  spinal   scaffold carrying paclitaxel-liposomes induces neuronal
               cord after injury. Macromol Biosci, 21(1):2000234.  differentiation  of neural  stem  cells  through  Wnt/beta-
                                                                  catenin signaling for spinal cord injury repair. Biomaterials,
               https://doi.org/10.1002/mabi.202000234
                                                                  183:114–127.
            43.  Sajadi E, Aliaghaei A, Farahni RM,  et al., 2021, Tissue   https://doi.org/10.1016/j.biomaterials.2018.08.037
               plasminogen activator loaded PCL nanofibrous scaffold
               promoted nerve regeneration after sciatic nerve transection   53.  Okada S, Hara M, Kobayakawa K,  et al., 2018, Astrocyte
               in male rats. Neurotox Res, 39(2):413–428.         reactivity and astrogliosis after spinal cord injury. Neurosci
                                                                  Res, 126:39–43.
               https://doi.org/10.1007/s12640-020-00276-z
                                                                  https://doi.org/10.1016/j.neures.2017.10.004
            44.  Babaloo H, Ebrahimi Barough S, Derakhshan MA, et al., 2018,
               PCL/gelatin nanofibrous scaffolds with human endometrial   54.  Bai Y, Lai B, Han W, et al., 2021, Decellularized optic nerve
               stem cells/schwann cells facilitate axon regeneration in   functional scaffold transplant facilitates directional axon
               spinal cord injury. J Cell Physiol, 234(7):11060–11069.  regeneration and remyelination in the injured white matter
                                                                  of the rat spinal cord. Neural Regen Res, 16(11):2276.
               https://doi.org/10.1002/jcp.27936
                                                                  https://doi.org/10.4103/1673-5374.310696
            45.  Rahimi-Sherbaf F, Nadri S, Rahmani A, et al., 2020, Placenta
               mesenchymal stem cells differentiation toward neuronal-like   55.  Sadik ME, Ozturk AK, Albayar A, et al., 2020, A strategy
               cells on nanofibrous scaffold. BioImpacts, 10(2):117–122.  toward bridging a complete spinal cord lesion using stretch-
                                                                  grown axons. Tissue Eng Part A, 26(11-12):623–635.
               https://doi.org/10.34172/bi.2020.14
                                                                  https://doi.org/10.1089/ten.TEA.2019.0230
            46.  Tukmachev D, Forostyak S, Koci Z, et al., 2016, Injectable
               extracellular matrix hydrogels as scaffolds for spinal cord   56.  Lan X, Zhao J, Zhang Y, et al., 2020, Oxymatrine exerts organ-
               injury repair. Tissue Eng Part A, 22(3-4):306–317.  and tissue-protective effects by regulating inflammation,
                                                                  oxidative stress, apoptosis, and fibrosis: From bench to
               https://doi.org/10.1089/ten.TEA.2015.0422          bedside. Pharmacol Res, 151:104541.
            47.  Ozudogru E, Isik M, Eylem CC, et al., 2021, Decellularized   https://doi.org/10.1016/j.phrs.2019.104541
               spinal cord meninges extracellular matrix hydrogel that
               supports neurogenic differentiation and vascular structure   57.  Nathan FM, Li S, 2017, Environmental cues determine the
               formation. J Tissue Eng Regen Med, 15(11):948–963.  fate of astrocytes after spinal cord injury. Neural Regen Res,
                                                                  12(12):1964–1970.
               https://doi.org/10.1002/term.3240
                                                                  https://doi.org/10.4103/1673-5374.221144
            48.  Zhang S, Wang XJ, Li WS, et al., 2018, Polycaprolactone/
               polysialic acid hybrid, multifunctional nanofiber scaffolds   58.  Gomes FC, Sousa VO, Romao L, 2005, Emerging roles
               for treatment of spinal cord injury. Acta Biomater, 77:15–27.  for TGF-beta1 in nervous system development.  Int  J  Dev
                                                                  Neurosci, 23(5):413–424.
               https://doi.org/10.1016/j.actbio.2018.06.038
                                                                  https://doi.org/10.1016/j.ijdevneu.2005.04.001
            49.  Wang P, Wang H, Ma K, et al., 2020, Novel cytokine-loaded
               PCL-PEG scaffold composites for spinal cord injury repair.   59.  Liu L, Lu W, Ma Z,  et al., 2012, Oxymatrine attenuates
               RSC Adv, 10(11):6306–6314.                         bleomycin-induced  pulmonary  fibrosis  in  mice  via  the
                                                                  inhibition of  inducible  nitric  oxide  synthase  expression
               https://doi.org/10.1039/c9ra10385f                 and the TGF-beta/Smad signaling pathway. Int J Mol Med,
            50.  Xing H, Ren X, Yin H, et al., 2019, Construction of a NT-3   29(5):815–822.
               sustained-release system cross-linked with an acellular   https://doi.org/10.3892/ijmm.2012.923
               spinal cord scaffold and its effects on differentiation of
               cultured bone marrow mesenchymal stem cells. Mater Sci   60.  Zhao HW, Zhang ZF, Chai X,  et al., 2016, Oxymatrine
               Eng C, 104:109902.                                 attenuates CCl4-induced hepatic fibrosis via modulation of
                                                                  TLR4-dependent inflammatory and TGF-beta1 signaling
               https://doi.org/10.1016/j.msec.2019.109902         pathways. Int Immunopharmacol, 36:249–255.
            51.  Yang Y,  Fan Y, Zhang  H,  et al., 2021,  Small molecules   https://doi.org/10.1016/j.intimp.2016.04.040
               combined with collagen hydrogel direct neurogenesis and






            Volume 9 Issue 3 (2023)                        118                         https://doi.org/10.18063/ijb.692
   121   122   123   124   125   126   127   128   129   130   131