Page 290 - IJB-9-3
P. 290
International Journal of Bioprinting 3D-printed thermosensitive hydrogel based microrobots
4. Li Y, Yang HY, Lee DS, 2021, Advances in biodegradable and 15. He W, Ma Y, Gao X, et al., 2020, Application of poly(N-
injectable hydrogels for biomedical applications. J Control isopropylacrylamide) as thermosensitive smart materials. J
Release, 330:151–160. Phys Conf Ser, 1676(1):012063.
https://doi.org/10.1016/j.jconrel.2020.12.008 https://doi.org/10.1088/1742-6596/1676/1/012063
5. Shi J, Yu L, Ding J, 2021, PEG-based thermosensitive and 16. Li J, Ma Q, Xu Y, et al., 2020, Highly bidirectional bendable
biodegradable hydrogels. Acta Biomater, 128:42–59. actuator engineered by LCST-UCST bilayer hydrogel
https://doi.org/10.1016/j.actbio.2021.04.009 with enhanced interface. ACS Appl Mater Interfaces,
12(49):55290–55298.
6. Wahid F, Zhao X-J, Jia S-R, et al., 2020, Nanocomposite
hydrogels as multifunctional systems for biomedical https://doi.org/10.1021/acsami.0c17085
applications: Current state and perspectives. Compos B Eng, 17. Li S, Wang W, Li W, et al., 2021, Fabrication of
200:108208. thermoresponsive hydrogel scaffolds with engineered
https://doi.org/10.1016/j.compositesb.2020.108208 microscale vasculatures. Adv Funct Mater, 31(27):2102685.
7. Chen L, Duan G, Zhang C, et al., 2022, 3D printed hydrogel https://doi.org/10.1002/adfm.202102685
for soft thermo-responsive smart window. Int J of Extrem 18. Tang L, Wang L, Yang X, et al., 2021, Poly(N-
Manuf, 4(2):025302. isopropylacrylamide)-based smart hydrogels: Design,
https://doi.org/10.1088/2631-7990/ac5ae3 properties and applications. Prog Mater Sci, 115:100702.
https://doi.org/10.1016/j.pmatsci.2020.100702
8. Boffito M, Sirianni P, Di Rienzo AM, et al., 2015,
Thermosensitive block copolymer hydrogels based on 19. Xiao XC, 2007, Effect of the initiator on thermosensitive rate
poly(varepsilon-caprolactone) and polyethylene glycol of poly(N-isopropylacrylamide) hydrogels. Express Polym
for biomedical applications: State of the art and future Lett, 1(4):232–235.
perspectives. J Biomed Mater Res A, 103(3):1276–1290. https://doi.org/10.3144/expresspolymlett.2007.35
https://doi.org/10.1002/jbm.a.35253 20. Fu W, Zhao B, 2016, Thermoreversible physically crosslinked
9. Bozoglan BK, Duman O, Tunc S, 2020, Preparation hydrogels from UCST-type thermosensitive ABA linear
and characterization of thermosensitive chitosan/ triblock copolymers. Polym Chem, 7(45):6980–6991.
carboxymethylcellulose/scleroglucan nanocomposite https://doi.org/10.1039/c6py01517d
hydrogels. Int J Biol Macromol, 162:781–797.
21. Hua L, Xie M, Jian Y, et al., 2019, Multiple-responsive and
https://doi.org/10.1016/j.ijbiomac.2020.06.087 amphibious hydrogel actuator based on asymmetric UCST-
10. Fan R, Deng X, Zhou L, et al., 2014, Injectable thermosensitive type volume phase transition. ACS Appl Mater Interfaces,
hydrogel composite with surface-functionalized calcium 11(46):43641–43648.
phosphate as raw materials. Int J Nanomedicine, 9:615–626. https://doi.org/10.1021/acsami.9b17159
https://doi.org/10.2147/IJN.S52689 22. Xia M, Cheng Y, Meng Z, et al., 2015, A novel nanocomposite
hydrogel with precisely tunable UCST and LCST. Macromol
11. Zhan Z, Chen L, Duan H, et al., 2021, 3D printed ultra- Rapid Commun, 36(5):477–482.
fast photothermal responsive shape memory hydrogel for
microrobots. Int J Extrem Manuf, 4(1):015302. https://doi.org/10.1002/marc.201400665
https://doi.org/10.1088/2631-7990/ac376b 23. Yu J, Wang K, Fan C, et al., 2021, An ultrasoft self-fused
supramolecular polymer hydrogel for completely preventing
12. Huang H, Qi X, Chen Y, et al., 2019, Thermo-sensitive postoperative tissue adhesion. Adv Mater, 33(16):e2008395.
hydrogels for delivering biotherapeutic molecules: A review.
Saudi Pharm J, 27(7):990–999. https://doi.org/10.1002/adma.202008395
24. Xue X, Thiagarajan L, Braim S, et al., 2017, Upper critical
https://doi.org/10.1016/j.jsps.2019.08.001
solution temperature thermo-responsive polymer brushes
13. Yuan M, Bi B, Huang J, et al., 2018, Thermosensitive and and a mechanism for controlled cell attachment. J Mater
photocrosslinkable hydroxypropyl chitin-based hydrogels Chem B, 5(25):4926–4933.
for biomedical applications. Carbohydr Polym, 192:10–18.
https://doi.org/10.1039/c7tb00052a
https://doi.org/10.1016/j.carbpol.2018.03.031 25. Ge S, Li J, Geng J, et al., 2021, Adjustable dual temperature-
14. Zhang Y, Yu J, Ren K, et al., 2019, Thermosensitive sensitive hydrogel based on a self-assembly cross-linking
hydrogels as scaffolds for cartilage tissue engineering. strategy with highly stretchable and healable properties.
Biomacromolecules, 20(4):1478–1492. Mater Horiz, 8(4):1189–1198.
https://doi.org/10.1021/acs.biomac.9b00043 https://doi.org/10.1039/d0mh01762k
Volume 9 Issue 3 (2023) 282 https://doi.org/10.18063/ijb.709

