Page 290 - IJB-9-3
P. 290

International Journal of Bioprinting                      3D-printed thermosensitive hydrogel based microrobots



            4.   Li Y, Yang HY, Lee DS, 2021, Advances in biodegradable and   15.  He  W,  Ma  Y,  Gao  X, et al.,  2020,  Application  of  poly(N-
               injectable hydrogels for biomedical applications. J Control   isopropylacrylamide) as thermosensitive smart materials. J
               Release, 330:151–160.                              Phys Conf Ser, 1676(1):012063.
               https://doi.org/10.1016/j.jconrel.2020.12.008      https://doi.org/10.1088/1742-6596/1676/1/012063
            5.   Shi J, Yu L, Ding J, 2021, PEG-based thermosensitive and   16.  Li J, Ma Q, Xu Y, et al., 2020, Highly bidirectional bendable
               biodegradable hydrogels. Acta Biomater, 128:42–59.  actuator engineered by LCST-UCST bilayer hydrogel
               https://doi.org/10.1016/j.actbio.2021.04.009       with enhanced interface.  ACS Appl Mater Interfaces,
                                                                  12(49):55290–55298.
            6.   Wahid F, Zhao X-J, Jia S-R, et al.,  2020, Nanocomposite
               hydrogels as multifunctional systems for biomedical   https://doi.org/10.1021/acsami.0c17085
               applications: Current state and perspectives. Compos B Eng,   17.  Li S, Wang W, Li W, et al., 2021, Fabrication of
               200:108208.                                        thermoresponsive hydrogel scaffolds with engineered
               https://doi.org/10.1016/j.compositesb.2020.108208  microscale vasculatures. Adv Funct Mater, 31(27):2102685.
            7.   Chen L, Duan G, Zhang C, et al., 2022, 3D printed hydrogel   https://doi.org/10.1002/adfm.202102685
               for soft thermo-responsive smart window. Int J of Extrem   18.  Tang  L,  Wang  L,  Yang  X, et al.,  2021,  Poly(N-
               Manuf, 4(2):025302.                                isopropylacrylamide)-based smart hydrogels: Design,
               https://doi.org/10.1088/2631-7990/ac5ae3           properties and applications. Prog Mater Sci, 115:100702.
                                                                  https://doi.org/10.1016/j.pmatsci.2020.100702
            8.   Boffito M, Sirianni P, Di Rienzo AM, et al., 2015,
               Thermosensitive block copolymer hydrogels based on   19.  Xiao XC, 2007, Effect of the initiator on thermosensitive rate
               poly(varepsilon-caprolactone) and polyethylene glycol   of poly(N-isopropylacrylamide) hydrogels.  Express Polym
               for biomedical applications: State of the art and future   Lett, 1(4):232–235.
               perspectives. J Biomed Mater Res A, 103(3):1276–1290.  https://doi.org/10.3144/expresspolymlett.2007.35
               https://doi.org/10.1002/jbm.a.35253             20.  Fu W, Zhao B, 2016, Thermoreversible physically crosslinked
            9.   Bozoglan BK, Duman O, Tunc S, 2020, Preparation   hydrogels from UCST-type thermosensitive ABA linear
               and  characterization  of  thermosensitive  chitosan/  triblock copolymers. Polym Chem, 7(45):6980–6991.
               carboxymethylcellulose/scleroglucan  nanocomposite  https://doi.org/10.1039/c6py01517d
               hydrogels. Int J Biol Macromol, 162:781–797.
                                                               21.  Hua L, Xie M, Jian Y, et al., 2019, Multiple-responsive and
               https://doi.org/10.1016/j.ijbiomac.2020.06.087     amphibious hydrogel actuator based on asymmetric UCST-
            10.  Fan R, Deng X, Zhou L, et al., 2014, Injectable thermosensitive   type volume phase transition.  ACS Appl Mater Interfaces,
               hydrogel composite with surface-functionalized calcium   11(46):43641–43648.
               phosphate as raw materials. Int J Nanomedicine, 9:615–626.  https://doi.org/10.1021/acsami.9b17159
               https://doi.org/10.2147/IJN.S52689              22.  Xia M, Cheng Y, Meng Z, et al., 2015, A novel nanocomposite
                                                                  hydrogel with precisely tunable UCST and LCST. Macromol
            11.  Zhan Z, Chen L, Duan H, et al.,  2021, 3D printed ultra-  Rapid Commun, 36(5):477–482.
               fast  photothermal responsive  shape  memory hydrogel  for
               microrobots. Int J Extrem Manuf, 4(1):015302.      https://doi.org/10.1002/marc.201400665
               https://doi.org/10.1088/2631-7990/ac376b        23.  Yu J, Wang K, Fan C,  et al., 2021, An ultrasoft self-fused
                                                                  supramolecular polymer hydrogel for completely preventing
            12.  Huang H, Qi X, Chen Y, et al., 2019, Thermo-sensitive   postoperative tissue adhesion. Adv Mater, 33(16):e2008395.
               hydrogels for delivering biotherapeutic molecules: A review.
               Saudi Pharm J, 27(7):990–999.                      https://doi.org/10.1002/adma.202008395
                                                               24.  Xue X, Thiagarajan L, Braim S, et al., 2017, Upper critical
               https://doi.org/10.1016/j.jsps.2019.08.001
                                                                  solution  temperature thermo-responsive polymer brushes
            13.  Yuan M, Bi B, Huang J, et al., 2018, Thermosensitive and   and a mechanism for controlled cell attachment.  J Mater
               photocrosslinkable hydroxypropyl chitin-based hydrogels   Chem B, 5(25):4926–4933.
               for biomedical applications. Carbohydr Polym, 192:10–18.
                                                                  https://doi.org/10.1039/c7tb00052a
               https://doi.org/10.1016/j.carbpol.2018.03.031   25.  Ge S, Li J, Geng J, et al., 2021, Adjustable dual temperature-
            14.  Zhang Y, Yu J, Ren K, et al., 2019, Thermosensitive   sensitive hydrogel based on a self-assembly cross-linking
               hydrogels  as  scaffolds for  cartilage  tissue  engineering.   strategy with highly stretchable and healable properties.
               Biomacromolecules, 20(4):1478–1492.                Mater Horiz, 8(4):1189–1198.
               https://doi.org/10.1021/acs.biomac.9b00043         https://doi.org/10.1039/d0mh01762k


            Volume 9 Issue 3 (2023)                        282                         https://doi.org/10.18063/ijb.709
   285   286   287   288   289   290   291   292   293   294   295