Page 291 - IJB-9-3
P. 291
International Journal of Bioprinting 3D-printed thermosensitive hydrogel based microrobots
26. Wu Y, Wang H, Gao F, et al., 2018, An injectable 12(4):045036.
supramolecular polymer nanocomposite hydrogel for https://doi.org/10.1088/1758-5090/abb539
prevention of breast cancer recurrence with theranostic and
mammoplastic functions. Adv Funct Mater, 28(21):1801000. 36. Lee SJ, Esworthy T, Stake S, et al., 2018, Advances in 3D
bioprinting for neural tissue engineering. Adv Biosyst,
https://doi.org/10.1002/adfm.201801000
2:1700213.
27. Xu Z, Liu W, 2018, Poly(N-acryloyl glycinamide): A https://doi.org/10.1002/adbi.201700213
fascinating polymer that exhibits a range of properties from
UCST to high-strength hydrogels. Chem Commun(Camb), 37. Lee JW, 2015, 3D nanoprinting technologies for tissue
54(75):10540–10553. engineering applications. J Nanomater, 2015:1–14.
https://doi.org/10.1039/c8cc04614j https://doi.org/10.1155/2015/213521
28. Boustta M, Vert M, 2020, Hyaluronic acid-poly(N- 38. Terzopoulou A, Wang X, Chen XZ, et al., 2020, Biodegradable
acryloyl glycinamide) copolymers as sources of degradable metal-organic framework-based microrobots (MOFBOTs).
thermoresponsive hydrogels for therapy. Gels, 6(4):E42. Adv Healthc Mater, 9:e2001031.
https://doi.org/10.3390/gels6040042 https://doi.org/10.1002/adhm.202001031
29. Yang D, Eronen H, Tenhu H, et al., 2021, Phase 39. Wang X, Qin X-H, Hu C, et al., 2018, 3D printed
transition behavior and catalytic activity of poly(N- enzymatically biodegradable soft helical microswimmers.
acryloylglycinamide-co-methacrylic acid) microgels. Adv Funct Mater, 28:1804107.
Langmuir, 37(8):2639–2648.
https://doi.org/10.1002/adfm.201804107
https://doi.org/10.1021/acs.langmuir.0c03264
40. Jiang Z, Tan ML, Taheri M, et al., 2020, Strong, self-healable,
30. Bunea A-I, del Castillo Iniesta N, Droumpali A, et al., and recyclable visible-light-responsive hydrogel actuators.
2021, Micro 3D printing by two-photon polymerization: Angew Chem Int Ed Engl, 59(18):7049–7056.
Configurations and parameters for the nanoscribe system.
Micro, 1:164–180. https://doi.org/10.1002/anie.201916058
https://doi.org/10.3390/micro1020013 41. Song X, Zhang Z, Zhu J, et al., 2020, Thermoresponsive
hydrogel induced by dual supramolecular assemblies and
31. Faraji Rad Z, Prewett PD, Davies GJ, 2021, High-resolution its controlled release property for enhanced anticancer drug
two-photon polymerization: The most versatile technique for delivery. Biomacromolecules, 21(4):1516–1527.
the fabrication of microneedle arrays. Microsyst Nanoeng, 7:71.
https://doi.org/10.1038/s41378-021-00298-3 https://doi.org/10.1021/acs.biomac.0c00077
32. Koskela JE, Turunen S, Ylä-Outinen L, et al., 2012, Two- 42. Peng X, Liu T, Jiao C, et al., 2017, Complex shape deformations
photon microfabrication of poly(ethylene glycol) diacrylate of homogeneous poly(N-isopropylacrylamide)/graphene
and a novel biodegradable photopolymer-comparison oxide hydrogels programmed by local NIR irradiation. J
of processability for biomedical applications. Polym Adv Mater Chem B, 5(39):7997–8003.
Technol, 23(6):992–1001. https://doi.org/10.1039/c7tb02119d
https://doi.org/10.1002/pat.2002 43. Bian Q, Fu L, Li H, 2022, Engineering shape memory and
33. Petcu EB, Midha R, McColl E, et al., 2018, 3D printing morphing protein hydrogels based on protein unfolding and
strategies for peripheral nerve regeneration. Biofabrication, folding. Nat Commun, 13(1):137.
10(3):032001. https://doi.org/10.1038/s41467-021-27744-0
https://doi.org/10.1088/1758-5090/aaaf50 44. Xu Z, Fan C, Zhang Q, et al., 2021, A self‐thickening and
self‐strengthening strategy for 3D printing high‐strength
34. Tao J, He Y, Wang S, et al., 2019, 3D-printed nerve conduit
with vascular networks to promote peripheral nerve and antiswelling supramolecular polymer hydrogels as
regeneration. Med Hypotheses, 133:109395. meniscus substitutes. Adv Funct Mater, 31(18):2100462.
https://doi.org/10.1002/adfm.202100462
https://doi.org/10.1016/j.mehy.2019.109395
45. Wang X, Chen XZ, Alcantara CCJ, et al., 2019, MOFBOTS:
35. Weisgrab G, Guillaume O, Guo Z, et al., 2020, 3D printing Metal-organic-framework-based biomedical microrobots.
of large-scale and highly porous biodegradable tissue Adv Mater, 31:e1901592.
engineering scaffolds from poly(trimethylene-carbonate)
using two-photon-polymerization. Biofabrication, https://doi.org/10.1002/adma.201901592
Volume 9 Issue 3 (2023) 283 https://doi.org/10.18063/ijb.709

