Page 291 - IJB-9-3
P. 291

International Journal of Bioprinting                      3D-printed thermosensitive hydrogel based microrobots



            26.  Wu Y, Wang H, Gao F, et al., 2018, An injectable   12(4):045036.
               supramolecular polymer nanocomposite hydrogel for   https://doi.org/10.1088/1758-5090/abb539
               prevention of breast cancer recurrence with theranostic and
               mammoplastic functions. Adv Funct Mater, 28(21):1801000.  36.  Lee SJ, Esworthy T, Stake S, et al., 2018, Advances in 3D
                                                                  bioprinting for neural tissue engineering.  Adv Biosyst,
               https://doi.org/10.1002/adfm.201801000
                                                                  2:1700213.
            27.  Xu Z, Liu W, 2018, Poly(N-acryloyl glycinamide): A   https://doi.org/10.1002/adbi.201700213
               fascinating polymer that exhibits a range of properties from
               UCST to high-strength hydrogels. Chem Commun(Camb),   37.  Lee JW, 2015, 3D nanoprinting technologies for tissue
               54(75):10540–10553.                                engineering applications. J Nanomater, 2015:1–14.
               https://doi.org/10.1039/c8cc04614j                 https://doi.org/10.1155/2015/213521
            28.  Boustta M, Vert M, 2020, Hyaluronic acid-poly(N-  38.  Terzopoulou A, Wang X, Chen XZ, et al., 2020, Biodegradable
               acryloyl glycinamide) copolymers as sources of degradable   metal-organic framework-based microrobots (MOFBOTs).
               thermoresponsive hydrogels for therapy. Gels, 6(4):E42.  Adv Healthc Mater, 9:e2001031.
               https://doi.org/10.3390/gels6040042                https://doi.org/10.1002/adhm.202001031
            29.  Yang  D,  Eronen  H,  Tenhu  H, et al.,  2021,  Phase   39.  Wang X, Qin X-H, Hu C, et al., 2018, 3D printed
               transition behavior and catalytic activity of poly(N-  enzymatically biodegradable  soft helical microswimmers.
               acryloylglycinamide-co-methacrylic  acid)  microgels.  Adv Funct Mater, 28:1804107.
               Langmuir, 37(8):2639–2648.
                                                                  https://doi.org/10.1002/adfm.201804107
               https://doi.org/10.1021/acs.langmuir.0c03264
                                                               40.  Jiang Z, Tan ML, Taheri M, et al., 2020, Strong, self-healable,
            30.  Bunea A-I, del Castillo Iniesta N, Droumpali A,  et  al.,   and recyclable visible-light-responsive hydrogel actuators.
               2021,  Micro  3D  printing  by  two-photon  polymerization:   Angew Chem Int Ed Engl, 59(18):7049–7056.
               Configurations and parameters for the nanoscribe system.
               Micro, 1:164–180.                                  https://doi.org/10.1002/anie.201916058
               https://doi.org/10.3390/micro1020013            41.  Song X, Zhang Z, Zhu J, et al., 2020, Thermoresponsive
                                                                  hydrogel induced by dual supramolecular assemblies and
            31.  Faraji Rad Z, Prewett PD, Davies GJ, 2021, High-resolution   its controlled release property for enhanced anticancer drug
               two-photon polymerization: The most versatile technique for   delivery. Biomacromolecules, 21(4):1516–1527.
               the fabrication of microneedle arrays. Microsyst Nanoeng, 7:71.
               https://doi.org/10.1038/s41378-021-00298-3         https://doi.org/10.1021/acs.biomac.0c00077
            32.  Koskela JE, Turunen S, Ylä-Outinen L, et al., 2012, Two-  42.  Peng X, Liu T, Jiao C, et al., 2017, Complex shape deformations
               photon microfabrication of poly(ethylene glycol) diacrylate   of homogeneous poly(N-isopropylacrylamide)/graphene
               and  a  novel  biodegradable  photopolymer-comparison   oxide hydrogels programmed by local NIR irradiation.  J
               of processability for biomedical applications. Polym Adv   Mater Chem B, 5(39):7997–8003.
               Technol, 23(6):992–1001.                           https://doi.org/10.1039/c7tb02119d
               https://doi.org/10.1002/pat.2002                43.  Bian Q, Fu L, Li H, 2022, Engineering shape memory and
            33.  Petcu  EB,  Midha  R,  McColl  E, et al.,  2018,  3D  printing   morphing protein hydrogels based on protein unfolding and
               strategies for peripheral nerve regeneration. Biofabrication,   folding. Nat Commun, 13(1):137.
               10(3):032001.                                      https://doi.org/10.1038/s41467-021-27744-0
               https://doi.org/10.1088/1758-5090/aaaf50        44.  Xu Z, Fan C, Zhang Q, et al., 2021, A self‐thickening and
                                                                  self‐strengthening strategy for 3D printing high‐strength
            34.  Tao J, He Y, Wang S, et al., 2019, 3D-printed nerve conduit
               with vascular networks to promote peripheral nerve   and antiswelling supramolecular polymer hydrogels as
               regeneration. Med Hypotheses, 133:109395.          meniscus substitutes. Adv Funct Mater, 31(18):2100462.
                                                                  https://doi.org/10.1002/adfm.202100462
               https://doi.org/10.1016/j.mehy.2019.109395
                                                               45.  Wang X, Chen XZ, Alcantara CCJ, et al., 2019, MOFBOTS:
            35.  Weisgrab G, Guillaume O, Guo Z, et al., 2020, 3D printing   Metal-organic-framework-based biomedical microrobots.
               of large-scale and highly porous biodegradable tissue   Adv Mater, 31:e1901592.
               engineering scaffolds from poly(trimethylene-carbonate)
               using   two-photon-polymerization.  Biofabrication,   https://doi.org/10.1002/adma.201901592







            Volume 9 Issue 3 (2023)                        283                         https://doi.org/10.18063/ijb.709
   286   287   288   289   290   291   292   293   294   295   296