Page 31 - IJB-9-3
P. 31

International Journal of Bioprinting            4D heterojunction shape reconfiguration by two-photon polymerization


               optics and metaphotonics. Nanophotonics, 9: 1139–1160.   adaptive soft-matter machines. Sci Adv, 6: eaax1464.
               https://doi.org/10.1515/nanoph-2019-0483           https://doi.org/10.1126/sciadv.aax1464
            9.   Wang S, Lee JM, Yeong WY, 2015, Smart hydrogels for 3D   21.  Zhao  Z, Kuang  X,  Yuan C,  et al.,  2018,  Hydrophilic/
               bioprinting, Int J Bioprint, 1: 01005.             hydrophobic composite shape-shifting structures. ACS Appl
                                                                  Mater Interf, 10: 19932–19939.
            10.  Apsite I, Biswas A, Li Y,  et al., 2020, Microfabrication
               using shape-transforming materials.  Adv Funct Mater,      https://doi.org/10.1021/acsami.8b02444
               30: 1908028.
                                                               22.  Wu Y, Hao X, Xiao R,  et al., 2019, Controllable bending
               https://doi.org/10.1002/adfm.201908028             of bi-hydrogel strips with differential swelling.  Acta Mech
                                                                  Solida Sin, 32: 652–662.
            11.  Gladman AS, Matsumoto EA, Nuzzo RG,  et al., 2016,
               Biomimetic 4D printing, Nat Mater, 15: 413–418.      https://doi.org/10.1007/s10338-019-00106-6
               https://doi.org/10.1038/nmat4544                23.  Van Hoorick J, 2017, Cross-linkable gelatins with superior
                                                                  mechanical properties through carboxylic acid modification:
            12.  Son H, Byun E, Yoon YJ, et al., 2020, Untethered actuation   Increasing the two-photon polymerization potential.
               of hybrid hydrogel gripper via ultrasound. ACS Macro Lett,   Biomacromolecules, 18: 3260–3272.
               9: 1766–1772.
                                                                  https://doi.org/10.1021/acs.biomac.7b00905
               https://doi.org/10.1021/acsmacrolett.0c00702
                                                               24.  Urrios  A, Parra-Cabrera C, Bhattacharjee N,  et al., 2016,
            13.  Visentin F, Babu SP, Meder F, et al., 2021, Selective stiffening   3D-printing of transparent bio-microfluidic devices in
               in soft actuators by triggered phase transition of hydrogel‐  PEG-DA. Lab Chip, 16: 2287–2294.
               filled elastomers. Adv Funct Mater, 31: 2101121.
                                                                  https://doi.org/10.1039/c6lc00153j
               https://doi.org/10.1002/adfm.202101121
                                                               25.  Dey  R,  Mukherjee  R,  Haldar  J,  2022,  Photo-crosslinked
            14.  Mishra AK, Pan WY, Giannelis E,  et al., 2021, Making   antimicrobial hydrogel exhibiting wound healing ability and
               bioinspired 3D-printed autonomic perspiring hydrogel
               actuators. Nat Protoc, 16: 2068–2087.              curing infections in vivo. Adv Healthc Mater, 5: 2224–2231.
                                                                  https://doi.org/10.1002/adhm.202200536
               https://doi.org/10.1038/s41596-020-00484-z
                                                               26.  Ceylan H, Yasa IC, Yasa O, et al., 3D-printed biodegradable
            15.  Adam G, Benouhiba A, Rabenorosoa K,  et al., 2021,
               4D printing: Enabling technology for microrobotics   microswimmer for theranostic cargo delivery and release.
               applications. Adv Intell Syst, 3: 2000216.         ACS Nano, 13: 3353–3362.
                                                                  https://doi.org/10.1021/acsnano.8b09233
               https://doi.org/10.1002/aisy.202000216
                                                               27.  Tao YF, Lu CC, Deng CS,  et al., 2022, Four-dimensional
            16.  McLellan K, Sun YC, Naguib H, 2022, A review of 4D
               printing: Materials,  structures,  and designs  towards  the   stimuli-responsive  hydrogels  micro-structured  via
               printing of biomedical wearable devices.  Bioprinting, 27:   femtosecond laser additive manufacturing. Micromachines,
               e00217.                                            13: 32.
                                                                  https://doi.org/10.3390/mi13010032
               https://doi.org/10.1016/j.bprint.2022.e00217
                                                               28.  Bauhofer AA, Krödel S, Rys J,  et al., 2017, Harnessing
            17.  Xing J, Zheng M, Duan X, 2015, Two-photon polymerization
               microfabrication of hydrogels: An advanced 3D printing   photochemical shrinkage in direct laser writing for shape
               technology for tissue engineering and drug delivery. Chem   morphing of polymer sheets. Adv Mater, 29: 1703024.
               Soc Rev, 44: 5031–5039.                            https://doi.org/10.1002/adma.201703024
               https://doi.org/10.1039/c5cs00278h              29.  Zhang F,  Lian MY,  Alhadhrami  A,  et al., 2022,  Laccase
                                                                  immobilized on functionalized cellulose nanofiber/alginate
            18.  Jin DD, Chen QY, Huang T, et al., 2020, Four-dimensional   composite hydrogel for efficient bisphenol A degradation
               direct  laser  writing  of  reconfigurable  compound   from polluted water.  Adv Compos Hybrid Mater,
               micromachines. Mater Today, 32: 19–25.
                                                                  5: 1852–1864.
               https://doi.org/10.1016/j.mattod.2019.06.002
                                                                  https://doi.org/10.1007/s42114-022-00476-5
            19.  Gardi G, Ceron S, Wang W,  et  al.,  2022, Microrobot   30.  Kong D, EI-Bahy ZM, Algadi H,  et al., 2022, Highly
               collectives with reconfigurable morphologies, behaviors,   sensitive strain sensors with wide operation range from
               and functions. Nat Commun, 13: 2239.
                                                                  strong MXene-composited polyvinyl alcohol/sodium
               https://doi.org/10.1038/s41467-022-29882-5         carboxymethylcellulose double  network hydrogel.  Adv
                                                                  Compos Hybrid Mater, 5: 1976–1987.
            20.  Zhuo SY, Zhao ZG, Xie ZX, et al., 2020, Complex multiphase
               organohydrogels with programmable mechanics toward      https://doi.org/10.1007/s42114-022-00531-1


            Volume 9 Issue 3 (2023)                         23                         https://doi.org/10.18063/ijb.678
   26   27   28   29   30   31   32   33   34   35   36