Page 31 - IJB-9-3
P. 31
International Journal of Bioprinting 4D heterojunction shape reconfiguration by two-photon polymerization
optics and metaphotonics. Nanophotonics, 9: 1139–1160. adaptive soft-matter machines. Sci Adv, 6: eaax1464.
https://doi.org/10.1515/nanoph-2019-0483 https://doi.org/10.1126/sciadv.aax1464
9. Wang S, Lee JM, Yeong WY, 2015, Smart hydrogels for 3D 21. Zhao Z, Kuang X, Yuan C, et al., 2018, Hydrophilic/
bioprinting, Int J Bioprint, 1: 01005. hydrophobic composite shape-shifting structures. ACS Appl
Mater Interf, 10: 19932–19939.
10. Apsite I, Biswas A, Li Y, et al., 2020, Microfabrication
using shape-transforming materials. Adv Funct Mater, https://doi.org/10.1021/acsami.8b02444
30: 1908028.
22. Wu Y, Hao X, Xiao R, et al., 2019, Controllable bending
https://doi.org/10.1002/adfm.201908028 of bi-hydrogel strips with differential swelling. Acta Mech
Solida Sin, 32: 652–662.
11. Gladman AS, Matsumoto EA, Nuzzo RG, et al., 2016,
Biomimetic 4D printing, Nat Mater, 15: 413–418. https://doi.org/10.1007/s10338-019-00106-6
https://doi.org/10.1038/nmat4544 23. Van Hoorick J, 2017, Cross-linkable gelatins with superior
mechanical properties through carboxylic acid modification:
12. Son H, Byun E, Yoon YJ, et al., 2020, Untethered actuation Increasing the two-photon polymerization potential.
of hybrid hydrogel gripper via ultrasound. ACS Macro Lett, Biomacromolecules, 18: 3260–3272.
9: 1766–1772.
https://doi.org/10.1021/acs.biomac.7b00905
https://doi.org/10.1021/acsmacrolett.0c00702
24. Urrios A, Parra-Cabrera C, Bhattacharjee N, et al., 2016,
13. Visentin F, Babu SP, Meder F, et al., 2021, Selective stiffening 3D-printing of transparent bio-microfluidic devices in
in soft actuators by triggered phase transition of hydrogel‐ PEG-DA. Lab Chip, 16: 2287–2294.
filled elastomers. Adv Funct Mater, 31: 2101121.
https://doi.org/10.1039/c6lc00153j
https://doi.org/10.1002/adfm.202101121
25. Dey R, Mukherjee R, Haldar J, 2022, Photo-crosslinked
14. Mishra AK, Pan WY, Giannelis E, et al., 2021, Making antimicrobial hydrogel exhibiting wound healing ability and
bioinspired 3D-printed autonomic perspiring hydrogel
actuators. Nat Protoc, 16: 2068–2087. curing infections in vivo. Adv Healthc Mater, 5: 2224–2231.
https://doi.org/10.1002/adhm.202200536
https://doi.org/10.1038/s41596-020-00484-z
26. Ceylan H, Yasa IC, Yasa O, et al., 3D-printed biodegradable
15. Adam G, Benouhiba A, Rabenorosoa K, et al., 2021,
4D printing: Enabling technology for microrobotics microswimmer for theranostic cargo delivery and release.
applications. Adv Intell Syst, 3: 2000216. ACS Nano, 13: 3353–3362.
https://doi.org/10.1021/acsnano.8b09233
https://doi.org/10.1002/aisy.202000216
27. Tao YF, Lu CC, Deng CS, et al., 2022, Four-dimensional
16. McLellan K, Sun YC, Naguib H, 2022, A review of 4D
printing: Materials, structures, and designs towards the stimuli-responsive hydrogels micro-structured via
printing of biomedical wearable devices. Bioprinting, 27: femtosecond laser additive manufacturing. Micromachines,
e00217. 13: 32.
https://doi.org/10.3390/mi13010032
https://doi.org/10.1016/j.bprint.2022.e00217
28. Bauhofer AA, Krödel S, Rys J, et al., 2017, Harnessing
17. Xing J, Zheng M, Duan X, 2015, Two-photon polymerization
microfabrication of hydrogels: An advanced 3D printing photochemical shrinkage in direct laser writing for shape
technology for tissue engineering and drug delivery. Chem morphing of polymer sheets. Adv Mater, 29: 1703024.
Soc Rev, 44: 5031–5039. https://doi.org/10.1002/adma.201703024
https://doi.org/10.1039/c5cs00278h 29. Zhang F, Lian MY, Alhadhrami A, et al., 2022, Laccase
immobilized on functionalized cellulose nanofiber/alginate
18. Jin DD, Chen QY, Huang T, et al., 2020, Four-dimensional composite hydrogel for efficient bisphenol A degradation
direct laser writing of reconfigurable compound from polluted water. Adv Compos Hybrid Mater,
micromachines. Mater Today, 32: 19–25.
5: 1852–1864.
https://doi.org/10.1016/j.mattod.2019.06.002
https://doi.org/10.1007/s42114-022-00476-5
19. Gardi G, Ceron S, Wang W, et al., 2022, Microrobot 30. Kong D, EI-Bahy ZM, Algadi H, et al., 2022, Highly
collectives with reconfigurable morphologies, behaviors, sensitive strain sensors with wide operation range from
and functions. Nat Commun, 13: 2239.
strong MXene-composited polyvinyl alcohol/sodium
https://doi.org/10.1038/s41467-022-29882-5 carboxymethylcellulose double network hydrogel. Adv
Compos Hybrid Mater, 5: 1976–1987.
20. Zhuo SY, Zhao ZG, Xie ZX, et al., 2020, Complex multiphase
organohydrogels with programmable mechanics toward https://doi.org/10.1007/s42114-022-00531-1
Volume 9 Issue 3 (2023) 23 https://doi.org/10.18063/ijb.678

