Page 32 - IJB-9-3
P. 32
International Journal of Bioprinting 4D heterojunction shape reconfiguration by two-photon polymerization
31. Wu YF, Chen EF, Weng XD, et al., 2022, Conductive polyvinyl of chitosan-Ag hydrogel by silver ion. ES Mater Manuf,
alcohol/silver nanoparticles hydrogel sensor with large draw 16: 30–36.
ratio, high sensitivity and high stability for human behavior 43. Kordjazi S, Kamyab K, Hemmatinejad N, 2020, Super-
monitoring. Eng Sci, 18: 113–120.
hydrophilic/oleophobic chitosan/acrylamide hydrogel: An
32. Huang K, Wu YF, Liu JC, et al., 2022, A double-layer efficient water/oil separation filter. Adv Compos Hybrid
carbon nanotubes/polyvinyl alcohol hydrogel with high Mater, 3: 167–176.
stretchability and compressibility for human motion
detection. Eng Sci, 17: 319–327. https://doi.org/10.1007/s42114-020-00150-8
44. Zhao WW, Chen LJ, Hu SM, et al., 2020, Printed hydrogel
33. Tao YF, Wei CY, Liu JW, et al., 2019, Nanostructured
electrically conductive hydrogels via ultrafast laser nanocomposites: Fine-tuning nanostructure for anisotropic
processing and self-assembly. Nanoscale, 11: 9176–9184. mechanical and conductive properties. Adv Compos Hybrid
Mater, 3: 315–324.
https://doi.org/10.1039/c9nr01230c
https://doi.org/10.1007/s42114-020-00161-5
34. Yamamoto Y, Kanao K, Arie T, et al., 2015, Air ambient-
operated pNIPAM-based flexible actuators stimulated by 45. Wang TR, Wusigale, Kuttappan D, et al., 2021,
human body temperature and sunlight. ACS Appl Mater Polydopamine-coated chitosan hydrogel beads for synthesis
Interf, 7: 11002–11006. and immobilization of silver nanoparticles to simultaneously
enhance antimicrobial activity and adsorption kinetics. Adv
https://doi.org/10.1021/acsami.5b02544 Compos Hybrid Mater, 4: 696–706.
35. Forg S, Karbacher A, Ye ZS, et al., 2022, Copolymerization https://doi.org/10.1007/s42114-021-00305-1
kinetics of dopamine methacrylamide during PNIPAM
microgel synthesis for increased adhesive properties. 46. Liu Z, Wang Y, Ren YY, et al., 2020, Poly(ionic liquid)
Langmuir, 38: 5275–5285. hydrogel-based anti-freezing ionic skin for a soft robotic
gripper. Mater Horiz, 7: 919–927.
https://doi.org/10.1021/acs.langmuir.1c02749
https://doi.org/10.1039/c9mh01688k
36. Wolski L, Ziolek M, 2018, Insight into pathways of methylene
blue degradation with H2O2 over mono and bimetallic Nb, 47. Zhang Y, Le X, Jian Y, et al., 2019, 3D fluorescent hydrogel
Zn oxides. Appl Catal B Environ, 224: 634–647. origami for multistage data security protection. Adv Funct
Mater, 29: 1905514.
https://doi.org/10.1016/j.apcatb.2017.11.008
https://doi.org/10.1002/adfm.201905514
37. Fernández-Pérez A, Marbán G, 2022, Visible light
spectroscopic analysis of methylene blue in water. J Appl 48. Zhu QY, Du C, Dai YH, et al., 2020, Light-steered locomotion
Spectrosc, 88: 1284–1290. of muscle-like hydrogel by self-coordinated shape change
and friction modulation. Nat Commun, 11: 5166.
https://doi.org/10.1007/s10812-022-01310-y
https://doi.org/10.1038/s41467-020-18801-1
38. Özcan M, Cakmakci M, Temize İ, 2020, Smart composites
with tunable stress-strain curves. Comput Mech, 65: 375–394. 49. Capella V, Rivero R, Liaudat A, et al., 2019, Cytotoxicity
and bioadhesive properties of poly-N-isopropylacrylamide
https://doi.org/10.1007/s00466-019-01773-5 hydrogel. Heliyon, 5: e01474.
39. Yang LX, Yang LB, Lowe RL, 2021, A viscoelasticity https://doi.org/10.1016/j.heliyon.2019.e01474
model for polymers: Time, temperature, and hydrostatic
pressure dependent Young’s modulus and Poisson’s ratio 50. Urzedo AL, Gonçalves MC, Nascimento MH, et al., 2020,
across transition temperatures and pressures. Mech Mater, Cytotoxicity and antibacterial activity of alginate hydrogel
157: 103839. containing nitric oxide donor and silver nanoparticles for
topical applications. ACS Biomater Sci Eng, 6: 2117–2134.
https://doi.org/10.1016/j.mechmat.2021.103839
https://doi.org/10.1021/acsbiomaterials.9b01685
40. Tao YF, Deng CS, Long J, et al., 2022, Multiprocess laser
lifting-off for nanostructured semiconductive hydrogels. 51. Mölzer C, Shankar SP, Masalski V, et al., 2019, TGF-β1-
Adv Mater Interf, 9: 2101250. activated Type 2 dendritic cells promote wound healing and
induce fibroblasts to express Tenascin C following corneal
https://doi.org/10.1002/admi.202101250
full-thickness hydrogel transplantation. J Tissue Eng Regen
41. Tao YF, Ren YP, Wang XJ, et al., 2021, A femtosecond Med, 13: 1507–1517.
laser-assembled SnO2 microbridge on interdigitated Au https://doi.org/10.1002/term.2853
electrodes for gas sensing. Mater Lett, 308: 131120.
52. Ma XY, Zhong W, Zhao J, et al., 2020,“Self-heating” enabled
https://doi.org/10.1016/j.matlet.2021.131120
one-pot synthesis of fluorescent carbon dots. Eng Sci,
42. Hua J, Björling M, Larsson R, et al., 2022, Friction control 9: 44–49.
Volume 9 Issue 3 (2023) 24 https://doi.org/10.18063/ijb.678

