Page 32 - IJB-9-3
P. 32

International Journal of Bioprinting            4D heterojunction shape reconfiguration by two-photon polymerization


            31.  Wu YF, Chen EF, Weng XD, et al., 2022, Conductive polyvinyl   of chitosan-Ag hydrogel by silver ion.  ES Mater Manuf,
               alcohol/silver nanoparticles hydrogel sensor with large draw   16: 30–36.
               ratio, high sensitivity and high stability for human behavior   43.  Kordjazi S, Kamyab K, Hemmatinejad N, 2020, Super-
               monitoring. Eng Sci, 18: 113–120.
                                                                  hydrophilic/oleophobic chitosan/acrylamide hydrogel: An
            32.  Huang K, Wu YF, Liu JC,  et al., 2022, A double-layer   efficient water/oil separation filter.  Adv  Compos  Hybrid
               carbon  nanotubes/polyvinyl  alcohol  hydrogel  with  high   Mater, 3: 167–176.
               stretchability and compressibility for human motion
               detection. Eng Sci, 17: 319–327.                   https://doi.org/10.1007/s42114-020-00150-8
                                                               44.  Zhao WW, Chen LJ, Hu SM, et al., 2020, Printed hydrogel
            33.  Tao YF, Wei CY, Liu JW,  et al., 2019, Nanostructured
               electrically conductive hydrogels via ultrafast laser   nanocomposites: Fine-tuning nanostructure for anisotropic
               processing and self-assembly. Nanoscale, 11: 9176–9184.   mechanical and conductive properties. Adv Compos Hybrid
                                                                  Mater, 3: 315–324.
               https://doi.org/10.1039/c9nr01230c
                                                                  https://doi.org/10.1007/s42114-020-00161-5
            34.  Yamamoto Y, Kanao K, Arie T, et al., 2015, Air ambient-
               operated pNIPAM-based flexible actuators stimulated by   45.  Wang TR, Wusigale, Kuttappan D,  et al., 2021,
               human body temperature and sunlight.  ACS Appl Mater   Polydopamine-coated chitosan hydrogel beads for synthesis
               Interf, 7: 11002–11006.                            and immobilization of silver nanoparticles to simultaneously
                                                                  enhance antimicrobial activity and adsorption kinetics. Adv
               https://doi.org/10.1021/acsami.5b02544             Compos Hybrid Mater, 4: 696–706.
            35.  Forg S, Karbacher A, Ye ZS, et al., 2022, Copolymerization      https://doi.org/10.1007/s42114-021-00305-1
               kinetics of dopamine methacrylamide during PNIPAM
               microgel  synthesis  for  increased  adhesive  properties.   46.  Liu Z, Wang Y, Ren YY,  et al.,  2020, Poly(ionic liquid)
               Langmuir, 38: 5275–5285.                           hydrogel-based anti-freezing ionic skin for a soft robotic
                                                                  gripper. Mater Horiz, 7: 919–927.
               https://doi.org/10.1021/acs.langmuir.1c02749
                                                                  https://doi.org/10.1039/c9mh01688k
            36.  Wolski L, Ziolek M, 2018, Insight into pathways of methylene
               blue degradation with H2O2 over mono and bimetallic Nb,   47.  Zhang Y, Le X, Jian Y, et al., 2019, 3D fluorescent hydrogel
               Zn oxides. Appl Catal B Environ, 224: 634–647.     origami for multistage data security protection. Adv Funct
                                                                  Mater, 29: 1905514.
               https://doi.org/10.1016/j.apcatb.2017.11.008
                                                                  https://doi.org/10.1002/adfm.201905514
            37.  Fernández-Pérez A, Marbán G, 2022, Visible light
               spectroscopic analysis of methylene blue in water.  J  Appl   48.  Zhu QY, Du C, Dai YH, et al., 2020, Light-steered locomotion
               Spectrosc, 88: 1284–1290.                          of muscle-like hydrogel by self-coordinated shape change
                                                                  and friction modulation. Nat Commun, 11: 5166.
               https://doi.org/10.1007/s10812-022-01310-y
                                                                  https://doi.org/10.1038/s41467-020-18801-1
            38.  Özcan M, Cakmakci M, Temize İ, 2020, Smart composites
               with tunable stress-strain curves. Comput Mech, 65: 375–394.   49.  Capella V, Rivero R, Liaudat A, et al.,  2019, Cytotoxicity
                                                                  and bioadhesive properties of poly-N-isopropylacrylamide
               https://doi.org/10.1007/s00466-019-01773-5         hydrogel. Heliyon, 5: e01474.
            39.  Yang LX, Yang LB, Lowe RL, 2021, A viscoelasticity      https://doi.org/10.1016/j.heliyon.2019.e01474
               model for polymers: Time, temperature, and hydrostatic
               pressure  dependent Young’s  modulus and  Poisson’s  ratio   50.  Urzedo AL, Gonçalves MC, Nascimento MH, et al., 2020,
               across transition temperatures and pressures. Mech Mater,   Cytotoxicity and antibacterial activity of alginate hydrogel
               157: 103839.                                       containing nitric oxide donor and silver nanoparticles for
                                                                  topical applications. ACS Biomater Sci Eng, 6: 2117–2134.
               https://doi.org/10.1016/j.mechmat.2021.103839
                                                                  https://doi.org/10.1021/acsbiomaterials.9b01685
            40.  Tao YF, Deng CS, Long J,  et al., 2022, Multiprocess laser
               lifting-off for nanostructured semiconductive hydrogels.   51.  Mölzer C, Shankar SP, Masalski V,  et al., 2019, TGF-β1-
               Adv Mater Interf, 9: 2101250.                      activated Type 2 dendritic cells promote wound healing and
                                                                  induce fibroblasts to express Tenascin C following corneal
               https://doi.org/10.1002/admi.202101250
                                                                  full-thickness hydrogel transplantation. J Tissue Eng Regen
            41.  Tao YF, Ren  YP, Wang XJ,  et al., 2021, A femtosecond   Med, 13: 1507–1517.
               laser-assembled SnO2 microbridge on interdigitated Au      https://doi.org/10.1002/term.2853
               electrodes for gas sensing. Mater Lett, 308: 131120.
                                                               52.  Ma XY, Zhong W, Zhao J, et al., 2020,“Self-heating” enabled
               https://doi.org/10.1016/j.matlet.2021.131120
                                                                  one-pot synthesis of fluorescent carbon dots.  Eng Sci,
            42.  Hua J, Björling M, Larsson R, et al., 2022, Friction control   9: 44–49.


            Volume 9 Issue 3 (2023)                         24                         https://doi.org/10.18063/ijb.678
   27   28   29   30   31   32   33   34   35   36   37