Page 404 - IJB-9-3
P. 404
International Journal of Bioprinting Bioprinting of a multicellular model
9. McGonigle P, Ruggeri B, 2014, Animal models of human e1901773.
disease: Challenges in enabling translation. Biochem https://doi.org/10.1002/adhm.201901773
Pharmacol, 87: 162–171.
21. Datta P, Dey M, Ataie Z, et al., 2020, 3D bioprinting for
https://doi.org/10.1016/j.bcp.2013.08.006
reconstituting the cancer microenvironment. NPJ Precis
10. Straussman R, Morikawa T, Shee K, et al., 2012, Tumour Oncol, 4: 18.
micro-environment elicits innate resistance to RAF https://doi.org/10.1038/s41698-020-0121-2
inhibitors through HGF secretion. Nature, 487: 500–504.
22. Zhao Y, Yao R, Ouyang L, et al., 2014, Three-dimensional
https://doi.org/10.1038/nature11183
printing of Hela cells for cervical tumor model in vitro.
11. Jackstadt R, van Hooff SR, Leach JD, et al., 2019, Epithelial Biofabrication, 6: 035001.
NOTCH signaling rewires the tumor microenvironment https://doi.org/10.1088/1758–5082/6/3/035001
of colorectal cancer to drive poor-prognosis subtypes and
metastasis. Cancer Cell, 36: 319–336.e317. 23. Chouhan D, Dey N, Bhardwaj N, et al., 2019, Emerging
and innovative approaches for wound healing and skin
https://doi.org/10.1016/j.ccell.2019.08.003
regeneration: Current status and advances. Biomaterials,
12. Xu M, Xu X, Pan B, et al., 2019, LncRNA SATB2-AS1 216: 119267.
inhibits tumor metastasis and affects the tumor immune https://doi.org/10.1016/j.biomaterials.2019.119267
cell microenvironment in colorectal cancer by regulating
SATB2. Mol Cancer, 18: 135. 24. Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct 3D
bioprinting of perfusable vascular constructs using a blend
https://doi.org/10.1186/s12943-019-1063-6
bioink. Biomaterials, 106: 58–68.
13. Xiong Y, Wang Y, Tiruthani K, 2019, Tumor immune https://doi.org/10.1016/j.biomaterials.2016.07.038
microenvironment and nano-immunotherapeutics in
colorectal cancer. Nanomedicine, 21: 102034. 25. Ozbolat IT, Hospodiuk M, 2016, Current advances and
future perspectives in extrusion-based bioprinting.
https://doi.org/10.1016/j.nano.2019.102034
Biomaterials, 76: 321–343.
14. Khalil S, Sun W, 2009, Bioprinting endothelial cells with https://doi.org/10.1016/j.biomaterials.2015.10.076]
alginate for 3D tissue constructs. J Biomech Eng, 131: 111002.
26. Paxton N, Smolan W, Böck T, et al., 2017, Proposal to assess
https://doi.org/10.1115/1.3128729
printability of bioinks for extrusion-based bioprinting
15. Matai I, Kaur G, Seyedsalehi A, et al., 2020, Progress in and evaluation of rheological properties governing
3D bioprinting technology for tissue/organ regenerative bioprintability. Biofabrication, 9: 044107.
engineering. Biomaterials, 226: 119536.
https://doi.org/10.1088/1758-5090/aa8dd8
https://doi.org/10.1016/j.biomaterials.2019.119536
27. Zhong Y, Herrera-Úbeda C, Garcia-Fernàndez J, et al.,
16. Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting 2020, Mutation of amphioxus Pdx and Cdx demonstrates
of collagen to rebuild components of the human heart. conserved roles for ParaHox genes in gut, anus and tail
Science, 365: 482–487. patterning. BMC Biol, 18: 68.
https://doi.org/10.1126/science.aav9051 https://doi.org/10.1186/s12915-020-00796-2
17. Yang H, Sun L, Pang Y, et al., 2021, Three-dimensional 28. Menon SS, Guruvayoorappan C, Sakthivel KM, et al., 2019,
bioprinted hepatorganoids prolong survival of mice with Ki-67 protein as a tumour proliferation marker. Clin Chim
liver failure. Gut, 70: 567–574. Acta, 491: 39–45.
https://doi.org/10.1136/gutjnl-2019-319960 https://doi.org/10.1016/j.cca.2019.01.011
18. Sun L, Yang H, Wang Y, et al., 2020, Application of a 3D 29. Väyrynen JP, Haruki K, Lau MC, et al., 2021, The prognostic
bioprinted hepatocellular carcinoma cell model in antitumor role of macrophage polarization in the colorectal cancer
drug research. Front Oncol, 10: 878. microenvironment. Cancer Immunol Res, 9: 8–19.
https://doi.org/10.3389/fonc.2020.00878 https://doi.org/10.1158/2326-6066.Cir-20-0527
19. Xie F, Sun L, Pang Y, et al., 2021, Three-dimensional bio- 30. Caligiuri G, 2020, CD31 as a therapeutic target in
printing of primary human hepatocellular carcinoma for atherosclerosis. Circ Res, 126: 1178–1189.
personalized medicine. Biomaterials, 265: 120416.
https://doi.org/10.1161/circresaha.120.315935
https://doi.org/10.1016/j.biomaterials.2020.120416
31. Rastogi P, Kandasubramanian B, 2019, Review of alginate-
20. Nie J, Gao Q, Fu J, et al., 2020, Grafting of 3D bioprinting based hydrogel bioprinting for application in tissue
to in vitro drug screening: A review. Adv Healthc Mater, 9: engineering. Biofabrication, 11: 042001.
Volume 9 Issue 3 (2023) 396 https://doi.org/10.18063/ijb.694

