Page 404 - IJB-9-3
P. 404

International Journal of Bioprinting                                     Bioprinting of a multicellular model


            9.   McGonigle P, Ruggeri B, 2014, Animal models of human   e1901773.
               disease: Challenges in enabling translation. Biochem      https://doi.org/10.1002/adhm.201901773
               Pharmacol, 87: 162–171.
                                                               21.  Datta  P,  Dey  M,  Ataie  Z,  et al.,  2020,  3D  bioprinting  for
               https://doi.org/10.1016/j.bcp.2013.08.006
                                                                  reconstituting the cancer microenvironment. NPJ Precis
            10.  Straussman R, Morikawa T, Shee K,  et al., 2012, Tumour   Oncol, 4: 18.
               micro-environment elicits innate resistance to RAF      https://doi.org/10.1038/s41698-020-0121-2
               inhibitors through HGF secretion. Nature, 487: 500–504.
                                                               22.  Zhao Y, Yao R, Ouyang L, et al., 2014, Three-dimensional
               https://doi.org/10.1038/nature11183
                                                                  printing of Hela cells for cervical tumor model  in vitro.
            11.  Jackstadt R, van Hooff SR, Leach JD, et al., 2019, Epithelial   Biofabrication, 6: 035001.
               NOTCH signaling rewires the tumor microenvironment      https://doi.org/10.1088/1758–5082/6/3/035001
               of colorectal cancer to drive poor-prognosis subtypes and
               metastasis. Cancer Cell, 36: 319–336.e317.      23.  Chouhan D, Dey N,  Bhardwaj N,  et al., 2019, Emerging
                                                                  and innovative approaches for wound healing and skin
               https://doi.org/10.1016/j.ccell.2019.08.003
                                                                  regeneration: Current status and advances. Biomaterials,
            12.  Xu M, Xu X, Pan B,  et al., 2019, LncRNA SATB2-AS1   216: 119267.
               inhibits tumor metastasis and affects the tumor immune      https://doi.org/10.1016/j.biomaterials.2019.119267
               cell microenvironment in colorectal cancer by regulating
               SATB2. Mol Cancer, 18: 135.                     24.  Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct 3D
                                                                  bioprinting of perfusable vascular constructs using a blend
               https://doi.org/10.1186/s12943-019-1063-6
                                                                  bioink. Biomaterials, 106: 58–68.
            13.  Xiong Y, Wang Y, Tiruthani K, 2019, Tumor immune      https://doi.org/10.1016/j.biomaterials.2016.07.038
               microenvironment and nano-immunotherapeutics in
               colorectal cancer. Nanomedicine, 21: 102034.    25.  Ozbolat IT, Hospodiuk M, 2016, Current advances and
                                                                  future perspectives in extrusion-based bioprinting.
               https://doi.org/10.1016/j.nano.2019.102034
                                                                  Biomaterials, 76: 321–343.
            14.  Khalil S, Sun W, 2009, Bioprinting endothelial cells with      https://doi.org/10.1016/j.biomaterials.2015.10.076]
               alginate for 3D tissue constructs. J Biomech Eng, 131: 111002.
                                                               26.  Paxton N, Smolan W, Böck T, et al., 2017, Proposal to assess
               https://doi.org/10.1115/1.3128729
                                                                  printability of bioinks for extrusion-based bioprinting
            15.  Matai  I, Kaur  G, Seyedsalehi  A,  et al., 2020,  Progress  in   and evaluation of rheological properties governing
               3D bioprinting technology for tissue/organ regenerative   bioprintability. Biofabrication, 9: 044107.
               engineering. Biomaterials, 226: 119536.
                                                                  https://doi.org/10.1088/1758-5090/aa8dd8
               https://doi.org/10.1016/j.biomaterials.2019.119536
                                                               27.  Zhong Y, Herrera-Úbeda C, Garcia-Fernàndez J,  et al.,
            16.  Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting   2020, Mutation of amphioxus Pdx and Cdx demonstrates
               of collagen to rebuild components of the human heart.   conserved roles for  ParaHox genes  in gut,  anus  and tail
               Science, 365: 482–487.                             patterning. BMC Biol, 18: 68.
               https://doi.org/10.1126/science.aav9051            https://doi.org/10.1186/s12915-020-00796-2
            17.  Yang H, Sun L, Pang Y,  et  al., 2021, Three-dimensional   28.  Menon SS, Guruvayoorappan C, Sakthivel KM, et al., 2019,
               bioprinted hepatorganoids prolong survival of mice with   Ki-67 protein as a tumour proliferation marker. Clin Chim
               liver failure. Gut, 70: 567–574.                   Acta, 491: 39–45.
               https://doi.org/10.1136/gutjnl-2019-319960         https://doi.org/10.1016/j.cca.2019.01.011
            18.  Sun L, Yang H, Wang Y, et al., 2020, Application of a 3D   29.  Väyrynen JP, Haruki K, Lau MC, et al., 2021, The prognostic
               bioprinted hepatocellular carcinoma cell model in antitumor   role of macrophage polarization in the colorectal cancer
               drug research. Front Oncol, 10: 878.               microenvironment. Cancer Immunol Res, 9: 8–19.
               https://doi.org/10.3389/fonc.2020.00878            https://doi.org/10.1158/2326-6066.Cir-20-0527
            19.  Xie F, Sun L, Pang Y, et al., 2021, Three-dimensional bio-  30.  Caligiuri G, 2020, CD31 as a therapeutic target in
               printing of primary human hepatocellular carcinoma for   atherosclerosis. Circ Res, 126: 1178–1189.
               personalized medicine. Biomaterials, 265: 120416.
                                                                  https://doi.org/10.1161/circresaha.120.315935
               https://doi.org/10.1016/j.biomaterials.2020.120416
                                                               31.  Rastogi P, Kandasubramanian B, 2019, Review of alginate-
            20.  Nie J, Gao Q, Fu J, et al., 2020, Grafting of 3D bioprinting   based hydrogel  bioprinting  for  application in  tissue
               to in vitro drug screening: A review. Adv Healthc Mater, 9:   engineering. Biofabrication, 11: 042001.


            Volume 9 Issue 3 (2023)                        396                         https://doi.org/10.18063/ijb.694
   399   400   401   402   403   404   405   406   407   408   409