Page 99 - IJB-9-3
P. 99

International Journal of Bioprinting                            Biocompatible 3D printing photosensitive resin



             References                                        12.  Panwar H, Raghuram GV, Jain D,  et  al., 2014, Cell cycle
                                                                  deregulation by methyl isocyanate: Implications in liver
            1.   Papadimitriou A, Mousoulea S, Gkantidis  N,  et al., 2018,   carcinogenesis. Environ Toxicol, 29(3):284–297.
               Clinical effectiveness of Invisalign(R) orthodontic treatment:   https://doi.org/10.1002/tox.21757
               A systematic review. Prog Orthod, 19(1):37.
                                                               13.  Ochiai B, Inoue S, Endo T, 2005, One-pot non-isocyanate
               https://doi.org/10.1186/s40510-018-0235-z          synthesis of polyurethanes from bisepoxide, carbon dioxide,
            2.   Xia JJ, Gateno J, Teichgraeber JF, 2009, New clinical protocol   and diamine. J Polym Sci A: Polym Chem, 43(24):6613–6618.
               to evaluate craniomaxillofacial deformity and plan surgical   https://doi.org/10.1002/pola.21103
               correction. J Oral Maxillofac Surg, 67(10):2093–2106.
                                                               14.  Błażek  K,  Datta J,  2019,  Renewable  natural  resources  as
               https://doi.org/10.1016/j.joms.2009.04.057
                                                                  green alternative substrates to obtain bio-based non-
            3.   Eglin D, Mortisen D, Alini M, 2009, Degradation of synthetic   isocyanate  polyurethanes-review.  Crit Rev Environ Sci
               polymeric scaffolds for bone and cartilage tissue repairs. Soft   Technol, 49(3):173–211.
               Matter, 5(5):938–947.
                                                                  https://doi.org/10.1080/10643389.2018.1537741
            4.   Cui X, Breitenkamp K, Finn MG, et al., 2012, Direct human   15.  Gomez-Lopez A, Elizalde F, Calvo I, et al., 2021, Trends in
               cartilage repair using three-dimensional bioprinting
               technology. Tissue Eng Part A, 18(11-12):1304–1312.  non-isocyanate polyurethane  (NIPU)  development.  Chem
                                                                  Commun (Camb), 57(92):12254–12265.
               https://doi.org/10.1089/ten.TEA.2011.0543
                                                                  https://doi.org/10.1039/d1cc05009e
            5.   Prabhakaran MP, Venugopal J, Ramakrishna S, 2009,
               Electrospun nanostructured scaffolds for bone tissue   16.  Pyo S-H, Persson P, Mollaahmad MA, et al., 2011, Cyclic
               engineering. Acta Biomater, 5(8):2884–2893.        carbonates as monomers for phosgene- and isocyanate-
                                                                  free polyurethanes and polycarbonates.  Pure Appl Chem,
               https://doi.org/10.1016/j.actbio.2009.05.007       84(3):637–661.
            6.   Nadi A, Khodaei M, Javdani M,  et al., 2022, Fabrication   https://doi.org/10.1351/PAC-CON-11-06-14
               of functional and nano-biocomposite scaffolds using
               strontium-doped bredigite nanoparticles/polycaprolactone/  17.  Heederik D, Henneberger PK, Redlich CA,  et  al., 2012,
               poly lactic acid via 3D printing for bone regeneration. Int J   Primary prevention: Exposure reduction, skin exposure and
               Biol Macromol, 219:1319–1336.                      respiratory protection. Eur Respir Rev, 21(124):112–124.
               https://doi.org/10.1016/j.ijbiomac.2022.08.136     https://doi.org/10.1183/09059180.00005111
            7.   Mahendiran B, Muthusamy S, Sampath S,  et al., 2021,   18.  Kim S, Lee H, Choi H,  et al., 2022, Investigation on
               Recent trends in natural polysaccharide based bioinks for   photopolymerization  of  PEGDA  to  fabricate  high-aspect-
               multiscale 3D printing in tissue regeneration: A review. Int J   ratio microneedles. RSC Adv, 12(16):9550–9555.
               Biol Macromol, 183:564–588.                        https://doi.org/10.1039/D2RA00189F
               https://doi.org/10.1016/j.ijbiomac.2021.04.179  19.  Duan J, Cao Y, Shen Z, et al., 2022, 3D bioprinted GelMA/
            8.   Singhal P, Small W, Cosgriff-Hernandez E,  et al., 2014,   PEGDA hybrid scaffold for establishing an in vitro model of
               Low density biodegradable shape memory polyurethane   melanoma. J Microbiol Biotechnol, 32(4):531–540.
               foams for embolic biomedical applications. Acta Biomater,   https://doi.org/10.4014/jmb.2111.11003
               10(1):67–76.
                                                               20.  Bao Z, Gao M, Fan X,  et al., 2020, Development and
               https://doi.org/10.1016/j.actbio.2013.09.027       characterization of a photo-cross-linked functionalized
            9.   Sun N, Di M, Liu Y, 2021, Lignin-containing polyurethane   type-I collagen (Oreochromis niloticus) and polyethylene
               elastomers with enhanced mechanical properties via   glycol diacrylate hydrogel. Int J Biol Macromol, 155:163–173.
               hydrogen bond interactions. Int J Biol Macromol, 184:1–8.  https://doi.org/10.1016/j.ijbiomac.2020.03.210
               https://doi.org/10.1016/j.ijbiomac.2021.06.038  21.  Asemani H, Zareanshahraki F, Mannari V, 2019, Design of
            10.  Gunatillake PA, Dandeniyage LS, Adhikari R,  et al.,   hybrid nonisocyanate polyurethane coatings for advanced
               2019, Advancements in the development of biostable   ambient temperature curing applications. J Appl Polym Sci,
               polyurethanes, Polym Rev, 59(3):391–417.           136(13):47266.
               https://doi.org/10.1080/15583724.2018.1493694      https://doi.org/10.1002/app.47266
            11.  Zhou X, Ren Z, Sun H, et al., 2022, 3D printing with high   22.  Donnelly J, Hernández FE, 2018, Trends in bond dissociation
               content of lignin enabled by introducing polyurethane, Int J   energies for the homolytic cleavage of successive molecular
               Biol Macromol, 221:1209–1217.                      bonds. J Chem Educ, 95(9):1672–1678.
               https://doi.org/10.1016/j.ijbiomac.2022.09.076     https://doi.org/10.1021/acs.jchemed.7b00962


            Volume 9 Issue 3 (2023)                         91                         https://doi.org/10.18063/ijb.684
   94   95   96   97   98   99   100   101   102   103   104