Page 308 - IJB-9-4
P. 308

International Journal of Bioprinting              Design and biomechanical analysis of porous tantalum prostheses



               cones for bone defects in revision total knee replacement: A   17.  Risse L, Woodcock S, Brüggemann J, et al., 2022, Stiffness
               3–11 years follow up report. Knee, 35(2022):175–182.  optimization and reliable design of a hip implant by using
               https://doi.org/10.1016/j.knee.2022.03.007         the potential of additive manufacturing processes. BioMed
                                                                  Eng OnLine, 21(1):23.
            7.   Huang G, Pan S, Qiu J, 2021, The clinical application of   https://doi.org/10.1186/s12938-022-00990-z
               porous tantalum and its new development for bone tissue
               engineering. Materials, 14(10):2647.            18.  Kharmanda G, Gowid S, Mahdi E,  et al., 2020, Efficient
                                                                  system reliability-based design optimization study for
               https://doi.org/10.3390/ma14102647                 replaced hip prosthesis using new optimized anisotropic
            8.   Kamath AF, Gee AO, Nelson CL, et al., 2012, Porous tantalum   bone formulations. Materials, 13(2):362.
               patellar components  in  revision  total  knee  arthroplasty   https://doi.org/10.3390/ma13020362
               minimum 5-year follow-up. J Arthroplast, 27(1):82–87.
                                                               19.  Frost HM, 2004, A 2003 update of bone physiology and
               https://doi.org/10.1016/j.arth.2011.04.024         Wolff’s law for clinicians. Angle Orthod, 74(1):3–15.

            9.   Kamath  AF,  Lee  GC,  Sheth  NP,  et al.,  2011,  Prospective   https://doi.org/10.1043/0003-3219(2004)0742.0.CO;2
               results of uncemented tantalum monoblock tibia in total   20.  Cowin SC, 2002, Mechanosensation and fluid transport in
               knee  arthroplasty:  Minimum  5-year  follow-up  in  patients   living bone. J Musculoskelet Neuronal Interact, 2(3):256–260.
               younger than 55 years. J Arthroplast, 26(8):1390–1395.
                                                               21.  Zupancic Cepic L, Frank M, Reisinger A,  et al., 2022,
               https://doi.org/10.1016/j.arth.2011.06.030         Biomechanical finite element analysis of short-implant-
            10.  Howard JL, Kudera J, Lewallen DG, et al., 2011, Early results   supported, 3-unit, fixed  CAD/CAM  prostheses  in  the
               of the use of tantalum femoral cones for revision total knee   posterior mandible. Int J Implant Dent, 8(1):8.
               arthroplasty. J Bone Joint Surg Am, 93(5):478–484.  https://doi.org/10.1186/s40729-022-00404-8
               https://doi.org/10.2106/JBJS.I.01322            22.  Liu B, Li X, Qiu W,  et  al., 2022, Mechanical distribution
                                                                  and new bone regeneration after implanting 3D printed
            11.  Unger AS, Duggan JP, 2011, Midterm results of a porous
               tantalum monoblock tibia component clinical and    prostheses for repairing metaphyseal bone defects: A finite
               radiographic results of 108 knees. J Arthroplast, 26(6):855–860.  element analysis and prospective clinical study. Front Bioeng
                                                                  Biotechnol, 10:921545.
               https://doi.org/10.1016/j.arth.2010.08.017
                                                                  https://doi.org/10.3389/fbioe.2022.921545
            12.  Kaplan RB, 1994,  Open cell tantalum structures for   23.  Lemos CAA, Verri FR, Santiago Junior JF,  et al., 2018,
               cancellous bone implants and cell and tissue receptors. EP,   Splinted and nonsplinted crowns with different implant
               EP0560279 B1.
                                                                  lengths in the posterior maxilla by three-dimensional finite
            13.  Thijs L, Sistiaga MM, Wauthle R,  et al., 2013, Strong   element analysis. J Healthc Eng, 2018:1–7.
               morphological and crystallographic texture and resulting   https://doi.org/10.1155/2018/3163096
               yield strength anisotropy in selective laser melted tantalum.
               Acta Biomater, 61(12):4657–4668.                24.  Silva LS, Verri FR, Lemos CAA, et al., 2021, Biomechanical
                                                                  effect of an occlusal device for patients with an implant-
               https://doi.org/10.1016/j.actamat.2013.04.036      supported  fixed  dental  prosthesis  under  parafunctional
            14.  Song C, Deng Z, Zou Z,  et al., 2022, Pure tantalum   loading: A 3D finite element analysis.  J Prosthet Dent,
               manufactured  by  laser  powder  bed  fusion:  Influence  of   126(2):223.e1–223.e8.
               scanning  speed  on  the  evolution  of  microstructure  and   https://doi.org/10.1016/j.prosdent.2021.04.024
               mechanical  properties.  Int J Refract Metals Hard Mater,   25.  Mikushev VM, Samarkin AI, Khomutova AS, 2021, Finite
               107(2022):105882.
                                                                  element simulations of stresses in bone implants made by
               https://doi.org/10.1016/j.ijrmhm.2022.105882       three-dimensional printing. IOP Conf Series: Mater Sci Eng,
                                                                  1117(1):12006.
            15.  Gao H, Jin X, Yang J,  et al., 2021, Porous structure and
               compressive failure mechanism of additively manufactured   https://doi.org/10.1088/1757-899X/1117/1/012006
               cubic-lattice  tantalum  scaffolds.  Mater Today Adv,   26.  Mirulla AI, Di Paolo S, Di Simone F,  et  al., 2020,
               12(2021):100183.                                   Biomechanical analysis of two types of osseointegrated
               https://doi.org/10.1016/j.mtadv.2021.100183        transfemoral prosthesis. Appl Sci Basel, 10(22):8263.
            16.  Tang HP, Yang K, Jia L, et al., 2020, Tantalum bone implants   https://doi.org/10.3390/app10228263
               printed by selective electron beam manufacturing (SEBM)   27.  Uğur L, Ozturk B, Erzincanli F, 2022, Reduction of stress
               and  their  clinical  applications.  J Miner Metals Mater Soc,   variations on sections (ROSVOS) for a femoral component.
               72(3):1016–1021.                                   Iran J Sci Technol Transact Mech Eng, 46(1):237–252.
               https://doi.org/10.1007/s11837-020-04016-8         https://doi.org/10.1007/s40997-020-00418-w


            Volume 9 Issue 4 (2023)                        300                         https://doi.org/10.18063/ijb.735
   303   304   305   306   307   308   309   310   311   312   313