Page 308 - IJB-9-4
P. 308
International Journal of Bioprinting Design and biomechanical analysis of porous tantalum prostheses
cones for bone defects in revision total knee replacement: A 17. Risse L, Woodcock S, Brüggemann J, et al., 2022, Stiffness
3–11 years follow up report. Knee, 35(2022):175–182. optimization and reliable design of a hip implant by using
https://doi.org/10.1016/j.knee.2022.03.007 the potential of additive manufacturing processes. BioMed
Eng OnLine, 21(1):23.
7. Huang G, Pan S, Qiu J, 2021, The clinical application of https://doi.org/10.1186/s12938-022-00990-z
porous tantalum and its new development for bone tissue
engineering. Materials, 14(10):2647. 18. Kharmanda G, Gowid S, Mahdi E, et al., 2020, Efficient
system reliability-based design optimization study for
https://doi.org/10.3390/ma14102647 replaced hip prosthesis using new optimized anisotropic
8. Kamath AF, Gee AO, Nelson CL, et al., 2012, Porous tantalum bone formulations. Materials, 13(2):362.
patellar components in revision total knee arthroplasty https://doi.org/10.3390/ma13020362
minimum 5-year follow-up. J Arthroplast, 27(1):82–87.
19. Frost HM, 2004, A 2003 update of bone physiology and
https://doi.org/10.1016/j.arth.2011.04.024 Wolff’s law for clinicians. Angle Orthod, 74(1):3–15.
9. Kamath AF, Lee GC, Sheth NP, et al., 2011, Prospective https://doi.org/10.1043/0003-3219(2004)0742.0.CO;2
results of uncemented tantalum monoblock tibia in total 20. Cowin SC, 2002, Mechanosensation and fluid transport in
knee arthroplasty: Minimum 5-year follow-up in patients living bone. J Musculoskelet Neuronal Interact, 2(3):256–260.
younger than 55 years. J Arthroplast, 26(8):1390–1395.
21. Zupancic Cepic L, Frank M, Reisinger A, et al., 2022,
https://doi.org/10.1016/j.arth.2011.06.030 Biomechanical finite element analysis of short-implant-
10. Howard JL, Kudera J, Lewallen DG, et al., 2011, Early results supported, 3-unit, fixed CAD/CAM prostheses in the
of the use of tantalum femoral cones for revision total knee posterior mandible. Int J Implant Dent, 8(1):8.
arthroplasty. J Bone Joint Surg Am, 93(5):478–484. https://doi.org/10.1186/s40729-022-00404-8
https://doi.org/10.2106/JBJS.I.01322 22. Liu B, Li X, Qiu W, et al., 2022, Mechanical distribution
and new bone regeneration after implanting 3D printed
11. Unger AS, Duggan JP, 2011, Midterm results of a porous
tantalum monoblock tibia component clinical and prostheses for repairing metaphyseal bone defects: A finite
radiographic results of 108 knees. J Arthroplast, 26(6):855–860. element analysis and prospective clinical study. Front Bioeng
Biotechnol, 10:921545.
https://doi.org/10.1016/j.arth.2010.08.017
https://doi.org/10.3389/fbioe.2022.921545
12. Kaplan RB, 1994, Open cell tantalum structures for 23. Lemos CAA, Verri FR, Santiago Junior JF, et al., 2018,
cancellous bone implants and cell and tissue receptors. EP, Splinted and nonsplinted crowns with different implant
EP0560279 B1.
lengths in the posterior maxilla by three-dimensional finite
13. Thijs L, Sistiaga MM, Wauthle R, et al., 2013, Strong element analysis. J Healthc Eng, 2018:1–7.
morphological and crystallographic texture and resulting https://doi.org/10.1155/2018/3163096
yield strength anisotropy in selective laser melted tantalum.
Acta Biomater, 61(12):4657–4668. 24. Silva LS, Verri FR, Lemos CAA, et al., 2021, Biomechanical
effect of an occlusal device for patients with an implant-
https://doi.org/10.1016/j.actamat.2013.04.036 supported fixed dental prosthesis under parafunctional
14. Song C, Deng Z, Zou Z, et al., 2022, Pure tantalum loading: A 3D finite element analysis. J Prosthet Dent,
manufactured by laser powder bed fusion: Influence of 126(2):223.e1–223.e8.
scanning speed on the evolution of microstructure and https://doi.org/10.1016/j.prosdent.2021.04.024
mechanical properties. Int J Refract Metals Hard Mater, 25. Mikushev VM, Samarkin AI, Khomutova AS, 2021, Finite
107(2022):105882.
element simulations of stresses in bone implants made by
https://doi.org/10.1016/j.ijrmhm.2022.105882 three-dimensional printing. IOP Conf Series: Mater Sci Eng,
1117(1):12006.
15. Gao H, Jin X, Yang J, et al., 2021, Porous structure and
compressive failure mechanism of additively manufactured https://doi.org/10.1088/1757-899X/1117/1/012006
cubic-lattice tantalum scaffolds. Mater Today Adv, 26. Mirulla AI, Di Paolo S, Di Simone F, et al., 2020,
12(2021):100183. Biomechanical analysis of two types of osseointegrated
https://doi.org/10.1016/j.mtadv.2021.100183 transfemoral prosthesis. Appl Sci Basel, 10(22):8263.
16. Tang HP, Yang K, Jia L, et al., 2020, Tantalum bone implants https://doi.org/10.3390/app10228263
printed by selective electron beam manufacturing (SEBM) 27. Uğur L, Ozturk B, Erzincanli F, 2022, Reduction of stress
and their clinical applications. J Miner Metals Mater Soc, variations on sections (ROSVOS) for a femoral component.
72(3):1016–1021. Iran J Sci Technol Transact Mech Eng, 46(1):237–252.
https://doi.org/10.1007/s11837-020-04016-8 https://doi.org/10.1007/s40997-020-00418-w
Volume 9 Issue 4 (2023) 300 https://doi.org/10.18063/ijb.735

