Page 309 - IJB-9-4
P. 309
International Journal of Bioprinting Design and biomechanical analysis of porous tantalum prostheses
28. Öztürk B, Erzincanli F, 2019, Development of femoral 36. Bayraktar HH, Morgan EF, Niebur GL, et al., 2004,
component design geometry by using DMROVAS (design Comparison of the elastic and yield properties of human
method requiring optimum volume and safety). Eng femoral trabecular and cortical bone tissue. J Biomech,
Comput, 37(2): 682–704. 37(1):27–35.
https://doi.org/10.1108/EC-03-2019-0077 https://doi.org/10.1016/S0021-9290(03)00257-4
29. Francisco AV, Raquel CO, Luis-Guillermo OL, et al., 2019, 37. Levine BR, Sporer S, Poggie RA, et al., 2006, Experimental
Influence of bone quality on the mechanical interaction between and clinical performance of porous tantalum in orthopedic
implant and bone: A finite element analysis. J Dent, 88:103161. surgery. Biomaterials, 27(27):4671–4681.
https://doi.org/10.1016/j.jdent.2019.06.008 https://doi.org/10.1016/j.biomaterials.2006.04.041
30. Cheong VS, Mumith A, Coathup M, et al., 2020, Bone 38. Kowalczyk P, 2006, Orthotropic properties of cancellous
remodeling in additive manufactured porous implants bone modelled as parameterized cellular material. Comput
changes the stress distribution, in Health Monitoring of Methods Biomech Biomed Eng, 9(3):135–147.
Structural and Biological Systems XIV; International Society https://doi.org/10.1080/10255840600751473
for Optics and Photonics, Bellingham, WA, USA.
39. Liu L, Shi Q, Chen Q, et al., 2019, Mathematical modeling of
https://doi.org/10.1117/12.2558093
bone in-growth into undegradable porous periodic scaffolds
31. Zysset PK, Guo XE, Hoffler CE, et al., 1999, Elastic modulus under mechanical stimulus. J Tissue Eng, 10:1–13.
and hardness of cortical and trabecular bone lamellae https://doi.org/10.1177/2041731419827167
measured by nanoindentation in the human femur. J
Biomech, 32(10):1005–1012. 40. Palomares KTS, Gleason RE, Mason ZD, et al., 2009,
Mechanical stimulation alters tissue differentiation and
https://doi.org/10.1016/S0021-9290(99)00111-6
molecular expression during bone healing. J Orthop Res,
32. Rho JY, Ashman RB, Turner CH, 1993, Young’s modulus 27(9):1123–1132.
of trabecular and cortical bone material: ultrasonic and https://doi.org/10.1002/jor.20863
microtensile measurements. J Biomech, 26(2):111–119.
41. Liu L, Duan J, Shi Q, et al., 2020, Mechanical effect on
https://doi.org/10.1016/0021-9290(93)90042-D
the evolution of bone formation during bone ingrowth
33. Arabnejad S, Burnett JR, Pura JA, et al., 2016, High-strength into a 3D-printed Ti-alloy scaffold. Mater Lett, 273(2020):
porous biomaterials for bone replacement: a strategy to 127921.
assess the interplay between cell morphology, mechanical https://doi.org/10.1016/j.matlet.2020.127921
properties, bone ingrowth and manufacturing constraints.
Acta Biomater, 30(2016):345–356. 42. Carter DR, 1987, Mechanical loading history and skeletal
biology. J Biomech, 20(11–12):1095–1109.
https://doi.org/10.1016/j.actbio.2015.10.048
https://doi.org/10.1016/0021-9290(87)90027-3
34. Mckown S, Shen Y, Brookes WK, et al., 2008, The quasi-
static and blast loading response of lattice structures. Int J 43. Betts DC, Müller R, 2014, Mechanical regulation of bone
Impact Eng, 35(8):795–810. regeneration: Theories, models, and experiments. Front
Endocrinol, 5:211.
https://doi.org/10.1016/j.ijimpeng.2007.10.005
https://doi.org/10.3389/fendo.2014.00211
35. Yan C, Liang H, Raymont D, et al., 2012, Evaluations of
cellular lattice structures manufactured using selective laser
melting. Int J Mach Tools Manuf, 62(2012):32–38.
https://doi.org/10.1016/j.ijmachtools.2012.06.002
Volume 9 Issue 4 (2023) 301 https://doi.org/10.18063/ijb.735

