Page 309 - IJB-9-4
P. 309

International Journal of Bioprinting              Design and biomechanical analysis of porous tantalum prostheses



            28.  Öztürk B, Erzincanli F, 2019, Development of femoral   36.  Bayraktar  HH,  Morgan  EF,  Niebur  GL,  et  al.,  2004,
               component design geometry by using DMROVAS (design   Comparison of the elastic and yield properties of human
               method requiring optimum volume and safety).  Eng   femoral  trabecular  and  cortical  bone  tissue.  J Biomech,
               Comput, 37(2): 682–704.                            37(1):27–35.
               https://doi.org/10.1108/EC-03-2019-0077            https://doi.org/10.1016/S0021-9290(03)00257-4
            29.  Francisco  AV,  Raquel  CO,  Luis-Guillermo  OL,  et al.,  2019,   37.  Levine BR, Sporer S, Poggie RA, et al., 2006, Experimental
               Influence of bone quality on the mechanical interaction between   and clinical performance of porous tantalum in orthopedic
               implant and bone: A finite element analysis. J Dent, 88:103161.  surgery. Biomaterials, 27(27):4671–4681.
               https://doi.org/10.1016/j.jdent.2019.06.008        https://doi.org/10.1016/j.biomaterials.2006.04.041
            30.  Cheong VS, Mumith A, Coathup M,  et al., 2020, Bone   38.  Kowalczyk P, 2006, Orthotropic properties of cancellous
               remodeling in additive manufactured porous implants   bone modelled as parameterized cellular material. Comput
               changes the stress distribution, in  Health Monitoring of   Methods Biomech Biomed Eng, 9(3):135–147.
               Structural and Biological Systems XIV; International Society   https://doi.org/10.1080/10255840600751473
               for Optics and Photonics, Bellingham, WA, USA.
                                                               39.  Liu L, Shi Q, Chen Q, et al., 2019, Mathematical modeling of
               https://doi.org/10.1117/12.2558093
                                                                  bone in-growth into undegradable porous periodic scaffolds
            31.  Zysset PK, Guo XE, Hoffler CE, et al., 1999, Elastic modulus   under mechanical stimulus. J Tissue Eng, 10:1–13.
               and hardness of cortical and trabecular bone lamellae   https://doi.org/10.1177/2041731419827167
               measured by nanoindentation in the human femur.  J
               Biomech, 32(10):1005–1012.                      40.  Palomares KTS, Gleason RE, Mason ZD,  et  al., 2009,
                                                                  Mechanical stimulation alters tissue differentiation and
               https://doi.org/10.1016/S0021-9290(99)00111-6
                                                                  molecular expression during bone healing.  J Orthop Res,
            32.  Rho JY, Ashman RB, Turner CH, 1993, Young’s modulus   27(9):1123–1132.
               of trabecular and cortical bone material: ultrasonic and   https://doi.org/10.1002/jor.20863
               microtensile measurements. J Biomech, 26(2):111–119.
                                                               41.  Liu L, Duan J, Shi Q,  et al., 2020, Mechanical effect on
               https://doi.org/10.1016/0021-9290(93)90042-D
                                                                  the evolution of bone formation during bone ingrowth
            33.  Arabnejad S, Burnett JR, Pura JA, et al., 2016, High-strength   into a 3D-printed Ti-alloy scaffold. Mater Lett, 273(2020):
               porous  biomaterials  for  bone  replacement:  a  strategy  to   127921.
               assess the interplay between cell morphology, mechanical   https://doi.org/10.1016/j.matlet.2020.127921
               properties, bone ingrowth and manufacturing constraints.
               Acta Biomater, 30(2016):345–356.                42.  Carter DR, 1987, Mechanical loading history and skeletal
                                                                  biology. J Biomech, 20(11–12):1095–1109.
               https://doi.org/10.1016/j.actbio.2015.10.048
                                                                  https://doi.org/10.1016/0021-9290(87)90027-3
            34.  Mckown S,  Shen Y, Brookes  WK,  et al., 2008,  The quasi-
               static and blast loading response of lattice structures. Int J   43.  Betts DC, Müller R, 2014, Mechanical regulation of bone
               Impact Eng, 35(8):795–810.                         regeneration:  Theories,  models,  and  experiments.  Front
                                                                  Endocrinol, 5:211.
               https://doi.org/10.1016/j.ijimpeng.2007.10.005
                                                                  https://doi.org/10.3389/fendo.2014.00211
            35.  Yan  C,  Liang  H,  Raymont  D,  et al.,  2012,  Evaluations  of
               cellular lattice structures manufactured using selective laser
               melting. Int J Mach Tools Manuf, 62(2012):32–38.
               https://doi.org/10.1016/j.ijmachtools.2012.06.002



















            Volume 9 Issue 4 (2023)                        301                         https://doi.org/10.18063/ijb.735
   304   305   306   307   308   309   310   311   312   313   314