Page 357 - IJB-9-4
P. 357

International Journal of Bioprinting                                      Bioprinting with machine learning



            47.  Acharya UR, Oh SL, Hagiwara Y, et al., 2017, A deep   https://doi.org/10.1016/j.bspc.2018.08.035
               convolutional neural network model to classify heartbeats.
               Comput Biol Med, 89:389–396.                    59.  Kim T-Y, Cho S-B, 2019, Predicting residential energy
                                                                  consumption using CNN-LSTM neural networks.  Energy,
               https://doi.org/10.1016/j.compbiomed.2017.08.022   182:72–81.
            48.  Zhou  D-X,  2020,  Theory  of  deep  convolutional  neural   https://doi.org/10.1016/j.energy.2019.05.230
               networks: Downsampling. Neural Netw, 124:319–327.
                                                               60.  Graves  A,  Schmidhuber  J,  2005,  Framewise  phoneme
               https://doi.org/10.1016/j.neunet.2020.01.018       classification with bidirectional LSTM and other neural
            49.  Yamashita R, Nishio M, Do RKG, et al., 2018, Convolutional   network architectures. Neural Netw, 18(5):602–610.
               neural networks: An overview and application in radiology.   https://doi.org/10.1016/j.neunet.2005.06.042
               Insights Imaging, 9(4):611–629.
                                                               61.  Wang G, Hao J, Ma J, et al., 2011, A comparative assessment
               https://doi.org/10.1007/s13244-018-0639-9
                                                                  of  ensemble  learning  for  credit  scoring.  Expert Syst Appl,
            50.  Brodrick PG, Davies  AB, Asner  GP, 2019, Uncovering   38(1):223–230.
               ecological patterns with convolutional neural networks.
               Trends Ecol Evol, 34(8):734–745.                   https://doi.org/10.1016/j.eswa.2010.06.048
               https://doi.org/10.1016/j.tree.2019.03.006      62.  Xu R, Lin H, Lu K, et al, 2021, A forest fire detection system
                                                                  based on ensemble learning[J]. Forests, 12(2):217.
            51.  Alhussein M, Aurangzeb K, Haider SI, 2020, Hybrid CNN-
               LSTM model for short-term individual household load   https://doi.org/10.3390/f12020217
               forecasting. IEEE Access, 8:180544–180557.      63.  Krawczyk B, Minku LL, Gama J, et al., 2017, Ensemble
                                                                  learning for data stream analysis: A survey. Inform Fusion,
               https://doi.org/10.1109/ACCESS.2020.3028281
                                                                  37:132–156.
            52.  Tian C, Ma J, Zhang C, et al, 2018, A deep neural network
               model for short-term load forecast based on long short-term   https://doi.org/10.1016/j.inffus.2017.02.004
               memory network and convolutional neural network[J].   64.  Dong X, Yu Z, Cao W, et al., 2020, A survey on ensemble
               Energies, 11(12):3493.                             learning. Front Comput, 14(2):241–258.
               https://doi.org/10.3390/en11123493                 https://doi.org/10.1007/s11704-019-8208-z
            53.  Kim HY, Won CH, 2018, Forecasting the volatility of stock   65.  Mienye ID, Sun Y, 2022, A survey of ensemble learning:
               price index: A hybrid model integrating LSTM with multiple   Concepts, algorithms, applications, and prospects.  IEEE
               GARCH-type models. Expert Syst Appl, 103:25–37.    Access, 10:99129–99149.
               https://doi.org/10.1016/j.eswa.2018.03.002         https://doi.org/10.1109/ACCESS.2022.3207287
            54.  Park K, Choi Y, Choi WJ, et al., 2020, LSTM-based battery   66.  Mao S, Chen J-W, Jiao L, et al., 2019, Maximizing diversity
               remaining useful life prediction with multi-channel charging   by transformed ensemble learning.  Appl Soft Comput,
               profiles. IEEE Access, 8:20786–20798.              82:105580.
               https://doi.org/10.1109/ACCESS.2020.2968939        https://doi.org/10.1016/j.asoc.2019.105580
            55.  Yu Y, Si X, Hu C, et al., 2019, A review of recurrent   67.  Wang G, Sun J, Ma J, et al., 2014, Sentiment classification:
               neural networks: LSTM cells and network architectures.    The contribution of ensemble learning. Decis Support Syst,
               Neural Comput, 31(7):1235–1270.                    57:77–93.
               https://doi.org/10.1162/neco_a_01199
                                                                  https://doi.org/10.1016/j.dss.2013.08.002
            56.  Chimmula VKR, Zhang L, 2020, Time series forecasting of   68.  Hamori S, Kawai M, Kume T, et al., 2018, Ensemble learning
               COVID-19 transmission in Canada using LSTM networks.
               Chaos Solitons Fract, 135:109864.                  or deep learning? Application to default risk analysis. J Risk
                                                                  Financ Manage, 11(1):12.
               https://doi.org/10.1016/j.chaos.2020.109864
                                                               69.  Xu R, Lin H, Lu K, et al., 2021, A forest fire detection system
            57.  Shahid F, Zameer A, Muneeb M, 2020, Predictions for   based on ensemble learning. Forests, 12(2):217.
               COVID-19 with deep learning models of LSTM, GRU and
               Bi-LSTM. Chaos Solitons Fract, 140:110212.      70.  Yang Y, Lv H, Chen N, 2022, A survey on ensemble learning
                                                                  under the era of deep learning. Artif Intell Rev: 1–45.
               https://doi.org/10.1016/j.chaos.2020.110212
                                                                  https://doi.org/10.1007/s10462-022-10283-5
            58.  Zhao J, Mao X, Chen L, 2019, Speech emotion recognition
               using deep 1D & 2D CNN LSTM networks. Biomed Signal   71.  Ghorbanzadeh O, Blaschke T, Gholamnia K,  et  al, 2019,
               Process, 47:312–323.                               Evaluation of different machine learning methods and


            Volume 9 Issue 4 (2023)                        349                         https://doi.org/10.18063/ijb.739
   352   353   354   355   356   357   358   359   360   361   362