Page 356 - IJB-9-4
P. 356

International Journal of Bioprinting                                      Bioprinting with machine learning



            24.  Ghayoomi Mohammadi M, Mahmoud D, Elbestawi M, 2021,   35.  Zhang Z, Jiang T, Li S, et al., 2018, Automated feature
               On the application of machine learning for defect detection in   learning for nonlinear process monitoring—An approach
               L-PBF additive manufacturing. Opt Laser Technol, 143:107338.  using stacked denoising autoencoder and k-nearest neighbor
                                                                  rule. J Process Contr, 64:49–61.
               https://doi.org/10.1016/j.optlastec.2021.107338
                                                                  https://doi.org/10.1016/j.jprocont.2018.02.004
            25.  Caggiano A, Zhang J, Alfieri V, et al., 2019, Machine learning-
               based image processing for on-line defect recognition in   36.  Basheer IA, Hajmeer M, 2000, Artificial neural networks:
               additive manufacturing. CIRP Ann, 68(1):451–454.   Fundamentals, computing, design, and application.
                                                                  J Microbiol Methods, 43(1):3–31.
               https://doi.org/10.1016/j.cirp.2019.03.021
            26.  Gobert C, Reutzel EW, Petrich J, et al., 2018, Application   https://doi.org/10.1016/S0167-7012(00)00201-3
               of supervised machine learning for defect detection during   37.  Wu Y-c, Feng J-w, 2018, Development and application
               metallic powder bed fusion additive manufacturing using   of  artificial  neural  network.  Wireless Pers Commun,
               high resolution imaging. Addit Manuf, 21:517–528.  102(2):1645–1656.

               https://doi.org/10.1016/j.addma.2018.04.005        https://doi.org/10.1007/s11277-017-5224-x
            27.  Li R, Jin M, Paquit VC, 2021, Geometrical defect detection   38.  Huang  Y,  2009,  Advances  in  artificial  neural  networks–
               for additive manufacturing with machine learning models.   methodological development and application[J].  Algo,
               Mater Design, 206:109726.                          2(3):973–1007.
                                                                  https://doi.org/10.3390/algor2030973
               https://doi.org/10.1016/j.matdes.2021.109726
                                                               39.  Yang  GR,  Wang  X-J,  2020,  Artificial  neural  networks  for
            28.  Bezdek JC, Chuah SK, Leep D, 1986, Generalized k-nearest   neuroscientists: A primer. Neuron, 107(6):1048–1070.
               neighbor rules. Fuzzy Set Syst, 18(3):237–256.
                                                                  https://doi.org/10.1016/j.neuron.2020.09.005
               https://doi.org/10.1016/0165-0114(86)90004-7
                                                               40.  Abiodun OI, Jantan A, Omolara AE, et al., 2018, State-of-
            29.  Gou J, Ma H, Ou W, et al., 2019, A generalized mean   the-art in artificial neural network applications: A survey.
               distance-based k-nearest neighbor classifier.  Expert Syst   Heliyon, 4(11):e00938.
               Appl, 115:356–372.
                                                                  https://doi.org/10.1016/j.heliyon.2018.e00938
               https://doi.org/10.1016/j.eswa.2018.08.021      41.  Vlachas PR, Pathak J, Hunt BR, et al., 2020, Backpropagation
            30.  Wang C, Shi Y, Fan X, et al., 2019, Attribute reduction based   algorithms and reservoir computing in recurrent neural
               on k-nearest neighborhood rough sets. Int J Approx Reason,   networks for the forecasting of complex spatiotemporal
               106:18–31.                                         dynamics. Neural Netw, 126:191–217.
               https://doi.org/10.1016/j.ijar.2018.12.013         https://doi.org/10.1016/j.neunet.2020.02.016
                                                               42.  Chan LW, Fallside F, 1987, An adaptive training algorithm for
            31.  Gallego A-J, Calvo-Zaragoza J, Valero-Mas JJ, et al., 2018,
               Clustering-based k-nearest neighbor classification for large-  back propagation networks. Comput Speech Lang, 2(3):205–218.
               scale data with neural codes representation. Pattern Recogn,   https://doi.org/10.1016/0885-2308(87)90009-X
               74:531–543.                                     43.  Hameed AA, Karlik B, Salman MS, 2016, Back-propagation

               https://doi.org/10.1016/j.patcog.2017.09.038       algorithm with variable adaptive momentum.  Knowledge-
                                                                  Based Syst, 114:79–87.
            32.  Zhang Q, Zhou H, Jiang Y, et al., 2019, A simple joint
               modulation format identification and OSNR monitoring   https://doi.org/10.1016/j.knosys.2016.10.001
               scheme for IMDD OOFDM transceivers using K-nearest   44.  Wright LG, Onodera T, Stein MM, et al., 2022, Deep physical
               neighbor algorithm. Appl Sci, 9(18):3892.          neural networks trained with backpropagation.  Nature,
                                                                  601(7894):549–555.
            33.  Ertuğrul ÖF, Tağluk ME, 2017, A novel version of k nearest
               neighbor: Dependent nearest neighbor. Appl Soft Comput,   https://doi.org/10.1038/s41586-021-04223-6
               55:480–490.                                     45.  Lawrence S, Giles CL, Ah Chung T, et al., 1997, Face
               https://doi.org/10.1016/j.asoc.2017.02.020         recognition: a convolutional neural-network approach.
                                                                  IEEE Trans Neural Netw, 8(1):98–113.
            34.  Shahabi  H,  Shirzadi  A,  Ghaderi K, et al.,  2020,  Flood   https://doi.org/10.1109/72.554195
               detection and susceptibility mapping using sentinel-1
               remote sensing data and a machine learning approach:   46.  Jaderberg M, Simonyan K, Vedaldi A, et al., 2016, Reading
               Hybrid intelligence of bagging ensemble based on k-nearest   text in the wild with convolutional neural networks. Int J
               neighbor classifier. Remote Sens, 12(2):266.       Comput Vis, 116(1):1–20.
                                                                  https://doi.org/10.1007/s11263-015-0823-z


            Volume 9 Issue 4 (2023)                        348                         https://doi.org/10.18063/ijb.739
   351   352   353   354   355   356   357   358   359   360   361