Page 415 - IJB-9-4
P. 415
International Journal of Bioprinting Development and characterization of AAMP for hydrogel bioink preparation
https://doi.org/10.1088/1758-5090/abde1e Ann Biomed Eng, 45: 210–223.
12. Unagolla JM, Jayasuriya AC, 2020, Hydrogel-based https://doi.org/10.1007/s10439-016-1704-5
3D bioprinting: A comprehensive review on cell-laden
hydrogels, bioink formulations, and future perspectives. 23. Apelgren P, Amoroso M, Säljö K, et al., 2018, Skin grafting
Appl Mater Today, 18: 100479. on 3D bioprinted cartilage constructs in vivo. Plast Reconstr
Surg Glob Open, 6: e1930.
https://doi.org/10.1016/j.apmt.2019.100479
https://doi.org/10.1097/GOX.0000000000001930
13. Yin J, Yan M, Wang Y, et al., 2018, 3D bioprinting of low-
concentration cell-laden gelatin methacrylate (GelMA) 24. Apelgren P, Amoroso M, Lindahl A, et al., 2017,
bioinks with a two-step cross-linking strategy. ACS Appl Chondrocytes and stem cells in 3D-bioprinted structures
Mater Interfaces, 10: 6849–6857. create human cartilage in vivo. PLoS One, 12: e0189428.
https://doi.org/10.1021/acsami.7b16059 https://doi.org/10.1371/journal.pone.0189428
14. Zheng Z, Wu J, Liu M, et al., 2018, 3D bioprinting of self- 25. Cohen DL, Lo W, Tsavaris A, et al., 2011, Increased mixing
standing silk-based bioink. Adv Healthc Mater, 7: e1701026. improves hydrogel homogeneity and quality of three-
dimensional printed constructs. Tissue Eng Part C Methods,
https://doi.org/10.1002/adhm.201701026 17: 239–248.
15. Puertas-Bartolome M, Wlodarczyk-Biegun MK, https://doi.org/10.1089/ten.TEC.2010.0093
Del Campo A, et al., 2020, 3D printing of a reactive hydrogel
bio-ink using a static mixing tool. Polymers (Basel), 12: 1986. 26. Lowe SB, Tan VT, Soeriyadi AH, et al., 2014, Synthesis and
high-throughput processing of polymeric hydrogels for 3D
https://doi.org/10.3390/polym12091986 cell culture. Bioconjug Chem, 25: 1581–1601.
16. Tamayol A, Najafabadi AH, Aliakbarian B, et al., 2015, https://doi.org/10.1021/bc500310v
Hydrogel templates for rapid manufacturing of bioactive
fibers and 3D constructs. Adv Healthc Mater, 4: 2146–2153. 27. Rabanel JM, Hildgen P, 2004, Preparation of hydrogel hollow
particles for cell encapsulation by a method of polyester core
https://doi.org/10.1002/adhm.201500492
degradation. J Microencapsul, 21: 413–431.
17. Li Y, Yang HY, Lee DS, 2021, Advances in biodegradable and https://doi.org/10.1080/02652040410001729223
injectable hydrogels for biomedical applications. J Control
Release, 330: 151–160. 28. Billiet T, Gevaert E, De Schryver T, et al., 2014, The 3D
printing of gelatin methacrylamide cell-laden tissue-
https://doi.org/10.1016/j.jconrel.2020.12.008
engineered constructs with high cell viability. Biomaterials,
18. Ma T, Lv L, Ouyang C, et al., 2021, Rheological behavior 35: 49–62.
and particle alignment of cellulose nanocrystal and its
composite hydrogels during 3D printing. Carbohydr Polyme, https://doi.org/10.1016/j.biomaterials.2013.09.078
253: 117217. 29. Wang LH, Ernst AU, An D, et al., 2021, A bioinspired
https://doi.org/10.1016/j.carbpol.2020.117217 scaffold for rapid oxygenation of cell encapsulation systems.
Nat Commun, 12: 5846.
19. Zhang W, Ma X, Li Y, et al., 2020, Preparation of smooth and
macroporous hydrogel via hand-held blender for wound https://doi.org/10.1038/s41467-021-26126-w
healing applications: In-vitro and in-vivo evaluations. 30. Touani FK, Borie M, Azzi F, et al., 2021, Pharmacological
Biomed Mater, 15: 055032. preconditioning improves the viability and proangiogenic
https://doi.org/10.1088/1748-605X/ab9d6f paracrine function of hydrogel-encapsulated mesenchymal
stromal cells. Stem Cells Int, 2021: 6663467.
20. Mulakkal MC, Trask RS, Ting VP, et al., 2018, Responsive
cellulose-hydrogel composite ink for 4D printing. Mater https://doi.org/10.1155/2021/6663467
Des, 160: 108–118. 31. Pan Z, Bui L, Yadav V, et al., 2021, Conformal single cell
https://doi.org/10.1016/j.matdes.2018.09.009 hydrogel coating with electrically induced tip streaming of
an AC cone. Biomater Sci, 9: 3284–3292.
21. Fu YC, Chen CH, Wang CZ, et al., 2013, Preparation of
porous bioceramics using reverse thermo-responsive https://doi.org/10.1039/d0bm02100h
hydrogels in combination with rhBMP-2 carriers: In 32. Karimi S, Bagher Z, Najmoddin N, et al., 2021, Alginate-
vitro and in vivo evaluation. J Mech Behav Biomed Mater, magnetic short nanofibers 3D composite hydrogel enhances
27: 64–76. the encapsulated human olfactory mucosa stem cells
https://doi.org/10.1016/j.jmbbm.2013.06.009 bioactivity for potential nerve regeneration application. Int J
Biol Macromol, 167: 796–806.
22. Müller M, Öztürk E, Arlov Ø, et al., 2017, Alginate sulfate-
nanocellulose bioinks for cartilage bioprinting applications. https://doi.org/10.1016/j.ijbiomac.2020.11.199
Volume 9 Issue 4 (2023) 407 https://doi.org/10.18063/ijb.705

