Page 415 - IJB-9-4
P. 415

International Journal of Bioprinting        Development and characterization of AAMP for hydrogel bioink preparation


               https://doi.org/10.1088/1758-5090/abde1e           Ann Biomed Eng, 45: 210–223.
            12.  Unagolla JM, Jayasuriya AC, 2020, Hydrogel-based      https://doi.org/10.1007/s10439-016-1704-5
               3D  bioprinting:  A  comprehensive review on  cell-laden
               hydrogels, bioink formulations, and future perspectives.   23.  Apelgren P, Amoroso M, Säljö K, et al., 2018, Skin grafting
               Appl Mater Today, 18: 100479.                      on 3D bioprinted cartilage constructs in vivo. Plast Reconstr
                                                                  Surg Glob Open, 6: e1930.
               https://doi.org/10.1016/j.apmt.2019.100479
                                                                  https://doi.org/10.1097/GOX.0000000000001930
            13.  Yin J, Yan M, Wang Y, et al., 2018, 3D bioprinting of low-
               concentration cell-laden gelatin methacrylate (GelMA)   24.  Apelgren P, Amoroso M, Lindahl A,  et al., 2017,
               bioinks with a two-step cross-linking strategy.  ACS Appl   Chondrocytes and stem cells in 3D-bioprinted structures
               Mater Interfaces, 10: 6849–6857.                   create human cartilage in vivo. PLoS One, 12: e0189428.
               https://doi.org/10.1021/acsami.7b16059             https://doi.org/10.1371/journal.pone.0189428
            14.  Zheng Z, Wu J, Liu M, et al., 2018, 3D bioprinting of self-  25.  Cohen DL, Lo W, Tsavaris A, et al., 2011, Increased mixing
               standing silk-based bioink. Adv Healthc Mater, 7: e1701026.   improves hydrogel homogeneity and quality of three-
                                                                  dimensional printed constructs. Tissue Eng Part C Methods,
               https://doi.org/10.1002/adhm.201701026             17: 239–248.
            15.  Puertas-Bartolome  M,  Wlodarczyk-Biegun  MK,     https://doi.org/10.1089/ten.TEC.2010.0093
               Del Campo A, et al., 2020, 3D printing of a reactive hydrogel
               bio-ink using a static mixing tool. Polymers (Basel), 12: 1986.   26.  Lowe SB, Tan VT, Soeriyadi AH, et al., 2014, Synthesis and
                                                                  high-throughput processing of polymeric hydrogels for 3D
               https://doi.org/10.3390/polym12091986              cell culture. Bioconjug Chem, 25: 1581–1601.
            16.  Tamayol A, Najafabadi AH, Aliakbarian B,  et  al., 2015,      https://doi.org/10.1021/bc500310v
               Hydrogel templates for rapid manufacturing of bioactive
               fibers and 3D constructs. Adv Healthc Mater, 4: 2146–2153.   27.  Rabanel JM, Hildgen P, 2004, Preparation of hydrogel hollow
                                                                  particles for cell encapsulation by a method of polyester core
               https://doi.org/10.1002/adhm.201500492
                                                                  degradation. J Microencapsul, 21: 413–431.
            17.  Li Y, Yang HY, Lee DS, 2021, Advances in biodegradable and      https://doi.org/10.1080/02652040410001729223
               injectable hydrogels for biomedical applications. J Control
               Release, 330: 151–160.                          28.  Billiet T, Gevaert E, De Schryver T,  et al., 2014, The 3D
                                                                  printing of gelatin methacrylamide cell-laden tissue-
               https://doi.org/10.1016/j.jconrel.2020.12.008
                                                                  engineered constructs with high cell viability. Biomaterials,
            18.  Ma T, Lv L, Ouyang C, et al., 2021, Rheological behavior   35: 49–62.
               and particle alignment of cellulose nanocrystal and its
               composite hydrogels during 3D printing. Carbohydr Polyme,      https://doi.org/10.1016/j.biomaterials.2013.09.078
               253: 117217.                                    29.  Wang LH, Ernst AU, An D,  et al., 2021, A bioinspired
               https://doi.org/10.1016/j.carbpol.2020.117217      scaffold for rapid oxygenation of cell encapsulation systems.
                                                                  Nat Commun, 12: 5846.
            19.  Zhang W, Ma X, Li Y, et al., 2020, Preparation of smooth and
               macroporous hydrogel via hand-held blender for wound      https://doi.org/10.1038/s41467-021-26126-w
               healing applications:  In-vitro and  in-vivo evaluations.   30.  Touani FK, Borie M, Azzi F, et al., 2021, Pharmacological
               Biomed Mater, 15: 055032.                          preconditioning  improves  the  viability  and  proangiogenic
               https://doi.org/10.1088/1748-605X/ab9d6f           paracrine function of hydrogel-encapsulated mesenchymal
                                                                  stromal cells. Stem Cells Int, 2021: 6663467.
            20.  Mulakkal MC, Trask RS, Ting VP, et al., 2018, Responsive
               cellulose-hydrogel composite ink for 4D printing.  Mater      https://doi.org/10.1155/2021/6663467
               Des, 160: 108–118.                              31.  Pan Z, Bui L, Yadav V, et al., 2021, Conformal single cell
               https://doi.org/10.1016/j.matdes.2018.09.009       hydrogel coating with electrically induced tip streaming of
                                                                  an AC cone. Biomater Sci, 9: 3284–3292.
            21.  Fu YC, Chen CH, Wang CZ,  et al., 2013, Preparation of
               porous bioceramics using reverse thermo-responsive      https://doi.org/10.1039/d0bm02100h
               hydrogels in combination with rhBMP-2 carriers:  In   32.  Karimi S, Bagher Z, Najmoddin N, et al., 2021, Alginate-
               vitro and in vivo evaluation. J Mech Behav Biomed Mater,   magnetic short nanofibers 3D composite hydrogel enhances
               27: 64–76.                                         the encapsulated human olfactory mucosa stem cells
               https://doi.org/10.1016/j.jmbbm.2013.06.009        bioactivity for potential nerve regeneration application. Int J
                                                                  Biol Macromol, 167: 796–806.
            22.  Müller M, Öztürk E, Arlov Ø, et al., 2017, Alginate sulfate-
               nanocellulose bioinks for cartilage bioprinting applications.      https://doi.org/10.1016/j.ijbiomac.2020.11.199


            Volume 9 Issue 4 (2023)                        407                         https://doi.org/10.18063/ijb.705
   410   411   412   413   414   415   416   417   418   419   420