Page 455 - IJB-9-4
P. 455

International Journal of Bioprinting               Single-step bioink deposition and maturation of human epidermis


               https://doi.org/10.1093/jbcr/irz208                cellular density and embedded vascular channels. Sci Adv, 5:
                                                                  eaaw2459.
            3.   Lohana P, Hassan S, Watson S, 2014, Integra™ in burns
               reconstruction: our experience and report of an unusual      https://doi.org/10.1126/sciadv.aaw2459
               immunological reaction. Ann Burns Fire Disasters, 27: 17.  15.  Hakimi  N,  Cheng  R,  Leng  L, et al.,  2018,  Handheld  skin
            4.   Akita S, Hayashida K, Yoshimoto H,  et al., 2017, Novel   printer: In situ formation of planar biomaterials and tissues.
               application of cultured epithelial  autografts  (CEA) with   Lab Chip, 18: 1440–1451.
               expanded mesh skin grafting over an artificial dermis or      https://doi.org/10.1039/c7lc01236e
               dermal wound bed preparation. Int J Mol Sci, 19: 57.
                                                               16.  Albanna M, Binder KW, Murphy SV, et al., 2019,  In situ
               https://doi.org/10.3390/ijms19010057               bioprinting of autologous skin cells accelerates wound healing
            5.   Elliott M, Vandervord J, 2002, Initial experience with   of extensive excisional full-thickness wounds. Sci Rep, 9: 1856.
               cultured epithelial autografts in massively burnt patients.      https://doi.org/10.1038/s41598-018-38366-w
               ANZ J Surg, 72: 893–895.
                                                               17.  Lee V, Singh G, Trasatti JP, et al., 2013, Design and fabrication
               https://doi.org/10.1046/j.1445-2197.2002.02591.x   of human skin by three-dimensional bioprinting. Tissue Eng
            6.   Wood F, Kolybaba M, Allen P, 2006, The use of cultured   Part C Methods, 20: 473–484.
               epithelial autograft in the treatment of major burn injuries:      https://doi.org/10.1089/ten.tec.2013.0335
               A critical review of the literature. Burns, 32: 395–401.
                                                               18.  Min D, Lee W, Bae IH, et al., 2018, Bioprinting of biomimetic
               https://doi.org/10.1016/j.burns.2006.02.025        skin containing melanocytes. Exp Dermatol, 27: 453–459.
            7.   Matsumura H, Gondo M, Imai R, et al., 2013, Chronological      https://doi.org/10.1111/exd.13376
               histological findings of cultured epidermal autograft over
               bilayer artificial dermis. Burns, 39: 705–713.   19.  Kim BS, Lee JS, Gao G, et al., 2017, Direct 3D cell-printing of
                                                                  human skin with functional transwell system. Biofabrication,
               https://doi.org/10.1016/j.burns.2012.10.004        9: 025034.
            8.   Motamedi S, Esfandpour A, Babajani A, et al., 2021, The      https://doi.org/10.1088/1758-5090/aa71c8
               current challenges on spray-based cell delivery to the skin
               wounds. Tissue Eng Part Methods, 27: 543–558.   20.  Moakes RJ, Senior JJ, Robinson TE, et al., 2021, A suspended
                                                                  layer additive manufacturing approach to the bioprinting of
               https://doi.org/10.1089/ten.TEC.2021.0158          tri-layered skin equivalents. APL Bioeng, 5: 046103.
            9.   Wood FM, Giles N, Stevenson A, et al., 2012, Characterisation      https://doi.org/10.1063/5.0061361
               of the cell suspension harvested from the dermal epidermal
               junction using a ReCell® kit. Burns, 38: 44–51.   21.  Jorgensen AM, Varkey M, Gorkun A, et al., 2019, Bioprinted
                                                                  skin recapitulates normal  collagen  remodeling in  full-
               https://doi.org/10.1016/j.burns.2011.03.001        thickness wounds. Tissue Eng Part A, 26: 512–526.
            10.  Cheng RY, Eylert G, Gariepy JM,  et al., 2020, Handheld      https://doi.org/10.1089/ten.tea.2019.0319
               instrument for wound-conformal delivery of skin
               precursor sheets improves healing in full-thickness burns.   22.  Baltazar T, Merola J, Catarino C, et al., 2020, Three
               Biofabrication, 12: 025002.                        dimensional bioprinting of  a vascularized  and perfusable
                                                                  skin graft using human keratinocytes, fibroblasts, pericytes,
               https://doi.org/10.1088/1758-5090/ab6413           and endothelial cells. Tissue Eng Part A, 26: 227–238.
            11.  Beh CW, Yew DS, Chai RJ, et al., 2021, A fluid-supported 3D      https://doi.org/10.1089/ten.TEA.2019.0201
               hydrogel bioprinting method. Biomaterials, 276: 121034.
                                                               23.  Cubo N, Garcia M, del Cañizo JF, et al., 2016, 3D bioprinting
               https://doi.org/10.1016/j.biomaterials.2021.121034  of functional human skin: Production and in vivo analysis.
            12.  Grigoryan B, Paulsen SJ, Corbett DC, et al., 2019, Multivascular   Biofabrication, 9: 015006.
               networks and functional intravascular topologies within      https://doi.org/10.1088/1758-5090/9/1/015006
               biocompatible hydrogels. Science, 364: 458–464.
                                                               24.  Ng WL, Qi JTZ, Yeong WY, et al., 2018, Proof-of-concept:
               https://doi.org/10.1126/science.aav9750            3D  bioprinting  of pigmented  human skin constructs.
            13.  Kolesky DB, Truby RL, Gladman AS, et al., 2014, 3D   Biofabrication, 10: 025005.
               bioprinting of vascularized, heterogeneous cell‐laden tissue      https://doi.org/10.1088/1758-5090/aa9e1e
               constructs. Adv Mater, 26: 3124–3130.
                                                               25.  MacAdam A, Chaudry E, McTiernan CD, et al., 2022,
               https://doi.org/10.1002/adma.201305506             Development of  in situ bioprinting: A  mini review.  Front
                                                                  Bioeng Biotechnol, 10: 940896.
            14.  Skylar-Scott  MA,  Uzel  SG,  Nam  LL, et al.,  2019,
               Biomanufacturing of organ-specific tissues with high      https://doi.org/10.3389/fbioe.2022.940896


            Volume 9 Issue 4 (2023)                        447                         https://doi.org/10.18063/ijb.738
   450   451   452   453   454   455   456   457   458   459   460