Page 455 - IJB-9-4
P. 455
International Journal of Bioprinting Single-step bioink deposition and maturation of human epidermis
https://doi.org/10.1093/jbcr/irz208 cellular density and embedded vascular channels. Sci Adv, 5:
eaaw2459.
3. Lohana P, Hassan S, Watson S, 2014, Integra™ in burns
reconstruction: our experience and report of an unusual https://doi.org/10.1126/sciadv.aaw2459
immunological reaction. Ann Burns Fire Disasters, 27: 17. 15. Hakimi N, Cheng R, Leng L, et al., 2018, Handheld skin
4. Akita S, Hayashida K, Yoshimoto H, et al., 2017, Novel printer: In situ formation of planar biomaterials and tissues.
application of cultured epithelial autografts (CEA) with Lab Chip, 18: 1440–1451.
expanded mesh skin grafting over an artificial dermis or https://doi.org/10.1039/c7lc01236e
dermal wound bed preparation. Int J Mol Sci, 19: 57.
16. Albanna M, Binder KW, Murphy SV, et al., 2019, In situ
https://doi.org/10.3390/ijms19010057 bioprinting of autologous skin cells accelerates wound healing
5. Elliott M, Vandervord J, 2002, Initial experience with of extensive excisional full-thickness wounds. Sci Rep, 9: 1856.
cultured epithelial autografts in massively burnt patients. https://doi.org/10.1038/s41598-018-38366-w
ANZ J Surg, 72: 893–895.
17. Lee V, Singh G, Trasatti JP, et al., 2013, Design and fabrication
https://doi.org/10.1046/j.1445-2197.2002.02591.x of human skin by three-dimensional bioprinting. Tissue Eng
6. Wood F, Kolybaba M, Allen P, 2006, The use of cultured Part C Methods, 20: 473–484.
epithelial autograft in the treatment of major burn injuries: https://doi.org/10.1089/ten.tec.2013.0335
A critical review of the literature. Burns, 32: 395–401.
18. Min D, Lee W, Bae IH, et al., 2018, Bioprinting of biomimetic
https://doi.org/10.1016/j.burns.2006.02.025 skin containing melanocytes. Exp Dermatol, 27: 453–459.
7. Matsumura H, Gondo M, Imai R, et al., 2013, Chronological https://doi.org/10.1111/exd.13376
histological findings of cultured epidermal autograft over
bilayer artificial dermis. Burns, 39: 705–713. 19. Kim BS, Lee JS, Gao G, et al., 2017, Direct 3D cell-printing of
human skin with functional transwell system. Biofabrication,
https://doi.org/10.1016/j.burns.2012.10.004 9: 025034.
8. Motamedi S, Esfandpour A, Babajani A, et al., 2021, The https://doi.org/10.1088/1758-5090/aa71c8
current challenges on spray-based cell delivery to the skin
wounds. Tissue Eng Part Methods, 27: 543–558. 20. Moakes RJ, Senior JJ, Robinson TE, et al., 2021, A suspended
layer additive manufacturing approach to the bioprinting of
https://doi.org/10.1089/ten.TEC.2021.0158 tri-layered skin equivalents. APL Bioeng, 5: 046103.
9. Wood FM, Giles N, Stevenson A, et al., 2012, Characterisation https://doi.org/10.1063/5.0061361
of the cell suspension harvested from the dermal epidermal
junction using a ReCell® kit. Burns, 38: 44–51. 21. Jorgensen AM, Varkey M, Gorkun A, et al., 2019, Bioprinted
skin recapitulates normal collagen remodeling in full-
https://doi.org/10.1016/j.burns.2011.03.001 thickness wounds. Tissue Eng Part A, 26: 512–526.
10. Cheng RY, Eylert G, Gariepy JM, et al., 2020, Handheld https://doi.org/10.1089/ten.tea.2019.0319
instrument for wound-conformal delivery of skin
precursor sheets improves healing in full-thickness burns. 22. Baltazar T, Merola J, Catarino C, et al., 2020, Three
Biofabrication, 12: 025002. dimensional bioprinting of a vascularized and perfusable
skin graft using human keratinocytes, fibroblasts, pericytes,
https://doi.org/10.1088/1758-5090/ab6413 and endothelial cells. Tissue Eng Part A, 26: 227–238.
11. Beh CW, Yew DS, Chai RJ, et al., 2021, A fluid-supported 3D https://doi.org/10.1089/ten.TEA.2019.0201
hydrogel bioprinting method. Biomaterials, 276: 121034.
23. Cubo N, Garcia M, del Cañizo JF, et al., 2016, 3D bioprinting
https://doi.org/10.1016/j.biomaterials.2021.121034 of functional human skin: Production and in vivo analysis.
12. Grigoryan B, Paulsen SJ, Corbett DC, et al., 2019, Multivascular Biofabrication, 9: 015006.
networks and functional intravascular topologies within https://doi.org/10.1088/1758-5090/9/1/015006
biocompatible hydrogels. Science, 364: 458–464.
24. Ng WL, Qi JTZ, Yeong WY, et al., 2018, Proof-of-concept:
https://doi.org/10.1126/science.aav9750 3D bioprinting of pigmented human skin constructs.
13. Kolesky DB, Truby RL, Gladman AS, et al., 2014, 3D Biofabrication, 10: 025005.
bioprinting of vascularized, heterogeneous cell‐laden tissue https://doi.org/10.1088/1758-5090/aa9e1e
constructs. Adv Mater, 26: 3124–3130.
25. MacAdam A, Chaudry E, McTiernan CD, et al., 2022,
https://doi.org/10.1002/adma.201305506 Development of in situ bioprinting: A mini review. Front
Bioeng Biotechnol, 10: 940896.
14. Skylar-Scott MA, Uzel SG, Nam LL, et al., 2019,
Biomanufacturing of organ-specific tissues with high https://doi.org/10.3389/fbioe.2022.940896
Volume 9 Issue 4 (2023) 447 https://doi.org/10.18063/ijb.738

