Page 456 - IJB-9-4
P. 456
International Journal of Bioprinting Single-step bioink deposition and maturation of human epidermis
26. Varkey M, Visscher D, van Zuijlen P, et al., 2019, Skin https://doi.org/10.1091/mbc.E10-08-0703
bioprinting: The future of burn wound reconstruction? 35. Breitkreutz D, Koxholt I, Thiemann K, et al., 2013, Skin
Burns Trauma, 7: 4.
basement membrane: The foundation of epidermal integrity-
https://doi.org/10.1186/s41038-019-0142-7 -BM functions and diverse roles of bridging molecules
27. Shpichka A, Butnaru D, Bezrukov EA, et al., 2019, Skin tissue nidogen and perlecan. Biomed Res Int, 2013: 179784.
regeneration for burn injury. Stem Cell Res Ther, 10: 94. https://doi.org/10.1155/2013/179784
https://doi.org/10.1186/s13287-019-1203-3 36. Sood R, Roggy DE, Zieger MJ, et al., 2015, A comparative
28. Smits JP, Niehues H, Rikken G, et al., 2017, Immortalized study of spray keratinocytes and autologous meshed split-
N/TERT keratinocytes as an alternative cell source in 3D thickness skin graft in the treatment of acute burn injuries.
human epidermal models. Sci Rep, 7: 11838. Wounds, 27: 31–40.
https://doi.org/10.1038/s41598-017-12041-y 37. Fredriksson C, Kratz G, Huss F, 2008, Transplantation of
cultured human keratinocytes in single cell suspension:
29. Armengot-Carbo M, Hernández-Martín Á,Torrelo A, A comparative in vitro study of different application
2015, The role of filaggrin in the skin barrier and disease techniques. Burns, 34: 212–219.
development. Actas Dermosifiliogr, 106: 86–95.
https://doi.org/10.1016/j.burns.2007.03.008
https://doi.org/10.1016/j.ad.2013.10.019
38. Svensjö T, Yao F, Pomahac B, et al., 2001, Autologous
30. Kanitakis J, Ramirez-Bosca A, Reano A, et al., 1988, Filaggrin keratinocyte suspensions accelerate epidermal wound
expression in normal and pathological skin. A marker of healing in pigs. J Surg Res, 99: 211–221.
keratinocyte differentiation. Virchows Arch A Pathol Anat
Histopathol, 412: 375–382. https://doi.org/10.1006/jsre.2001.6197
https://doi.org/10.1007/bf00750265 39. Lamb R, Ambler CA, 2013, Keratinocytes propagated in
serum-free, feeder-free culture conditions fail to form
31. Varkey M, Ding J,Tredget EE, 2014, Superficial dermal stratified epidermis in a reconstituted skin model. PLoS One,
fibroblasts enhance basement membrane and epidermal 8: e52494.
barrier formation in tissue-engineered skin: Implications for
treatment of skin basement membrane disorders. Tissue Eng https://doi.org/10.1371/journal.pone.0052494
Part A, 20: 540–552. 40. Mammone T, Ingrassia M, Goyarts E, 2008, Osmotic stress
https://doi.org/10.1089/ten.TEA.2013.0160 induces terminal differentiation in cultured normal human
epidermal keratinocytes. In Vitro Cell Dev Biol Anim,
32. Hamill KJ, Kligys K, Hopkinson SB, et al., 2009, Laminin 44: 135–139.
deposition in the extracellular matrix: A complex picture
emerges. J Cell Sci, 122: 4409–4417. https://doi.org/10.1007/s11626-008-9087-z
https://doi.org/10.1242/jcs.041095 41. Hospodiuk M, Dey M, Sosnoski D, et al., 2017, The
bioink: A comprehensive review on bioprintable materials.
33. Miller I, Min M, Yang C, et al., 2018, Ki67 is a graded rather Biotechnol Adv, 35: 217–239.
than a binary marker of proliferation versus quiescence. Cell
Rep, 24: 1105–1112.e5. https://doi.org/10.1016/j.biotechadv.2016.12.006
https://doi.org/10.1016/j.celrep.2018.06.110 42. Chai RJ, Wong WL, Beh CW, 2022, Developing a
Bioprintable Epidermis. In: International Conference of
34. Alam H, Sehgal L, Kundu ST, et al., 2011, Novel function
of keratins 5 and 14 in proliferation and differentiation of Additive Manufacturing for a Better World (AMBW 2022).
stratified epithelial cells. Mol Biol Cell, 22: 4068–4078. https://doi.org/10.1016/j.matpr.2022.08.531
Volume 9 Issue 4 (2023) 448 https://doi.org/10.18063/ijb.738

