Page 264 - IJB-9-5
P. 264

International Journal of Bioprinting                      Antheraea pernyi silk fibroin bioinks for DLP 3D printing



            22.  Cui B, Zhang C, Gan B, et al., 2020, Collagen-tussah silk   solution by atmospheric pressure plasma treatment. Fibers
               fibroin hybrid scaffolds loaded with bone mesenchymal   Polym, 20(8): 1594–1600.
               stem cells promote skin wound repair in rats. Mater Sci Eng   https://doi.org/10.1007/s12221-019-9015-8
               C, 109: 110611.
               https://doi.org/10.1016/j.msec.2019.110611      34.  Gu Y, Ji Y, Zhao Y, et al., 2012, The influence of substrate
                                                                  stiffness on the behavior and functions of Schwann cells in
            23.  Zou  S,  Wang  X,  Fan  S,  et al.,  2019,  Fabrication  and   culture. Biomaterials, 33(28): 6672–6681.
               characterization of regenerated Antheraea pernyi silk
               fibroin scaffolds for Schwann cell culturing.  Eur  Polym  J,   https://doi.org/10.1016/j.biomaterials.2012.06.006
               117: 123–133.                                   35.  Xu Y, Gu Y, Cai F, et al., 2020, Metabolism balance regulation
               https://doi.org/10.1016/j.eurpolymj.2019.04.056    via antagonist-functionalized injectable microsphere for
                                                                  nucleus pulposus regeneration.  Adv Funct Mater,  30(52):
            24.  Yan S, Zhao C, Wu X,  et al., 2010, Gelation behavior of   2006333.
               Antheraea pernyi silk fibroin. Sci China Chem, 53(3): 535–541.
                                                                  https://doi.org/10.1002/adfm.202006333
               https://doi.org/10.1007/s11426-010-0093-0
                                                               36.  Sun J, Li J, Huan Z, et al., 2023, Mesenchymal stem cell-laden
            25.  Lee BH, Lum N, Seow LY,  et al., 2016, Synthesis and   composite β cell porous microgel for diabetes treatment.
               characterization of types A and B gelatin methacryloyl for   Adv Funct Mater, 2211897.
               bioink applications. Materials, 9(10): 797.
                                                                  https://doi.org/10.1002/adfm.202211897
               https://doi.org/10.3390/ma9100797
                                                               37.  Hu Y, Zhang Q, You R, et al., 2012, The relationship between
            26.  Carbonaro M, Nucara A, 2010, Secondary structure of food
               proteins  by  Fourier  transform  spectroscopy  in  the  mid-  secondary structure and biodegradation behavior of silk
               infrared region. Amino Acids, 38(3): 679–690.      fibroin scaffolds. Adv Mater Sci Eng, 2012: 185905.
               https://doi.org/10.1007/s00726-009-0274-3          https://doi.org/10.1155/2012/185905
            27.  Taddei P, Tsukada M,Freddi G, 2013, Affinity of protein   38.  Tao J, Zhang J, Du T,  et al., 2019, Rapid 3D printing of
               fibres towards sulfation. J Raman Spectrosc, 44(2): 190–197.  functional nanoparticle-enhanced conduits for effective
                                                                  nerve repair. Acta Biomater, 90: 49–59.
               https://doi.org/10.1002/jrs.4168
                                                                  https://doi.org/10.1016/j.actbio.2019.03.047
            28.  Shirahama H, Lee BH, Tan LP, et al., 2016, Precise tuning
               of facile one-pot gelatin methacryloyl (GelMA) synthesis.   39.  Xu X, Tao J, Wang S,  et al., 2019, 3D printing of nerve
               Sci Rep, 6(1): 31036.                              conduits with nanoparticle-encapsulated RGFP966.  Appl
                                                                  Mater Today, 16: 247–256.
               https://doi.org/10.1038/srep31036
                                                                  https://doi.org/10.1016/j.apmt.2019.05.014
            29.  Kumar M, Gupta P, Bhattacharjee S,  et al., 2018,
               Immunomodulatory  injectable  silk hydrogels maintaining   40.  Dendukuri  D,  Pregibon  DC,  Collins  J,  et al.,  2006,
               functional islets and promoting anti-inflammatory M2   Continuous-flow  lithography  for  high-throughput
               macrophage polarization. Biomaterials, 187: 1–17.  microparticle synthesis. Nat Mater, 5(5): 365–369.
               https://doi.org/10.1016/j.biomaterials.2018.09.037  https://doi.org/10.1038/nmat1617
            30.  Li XF, Zhang J, Feng YF, et al., 2018, Tuning the structure and   41.  DUrso D, Ehrhardt P, Müller HW, 1999, Peripheral myelin
               performance of silk biomaterials by combining mulberry and   protein 22 and protein zero: A novel association in peripheral
               non-mulberry silk fibroin. Polym Degrad Stab, 147: 57–63.  nervous system myelin. J Neurosci, 19(9): 3396.
               https://doi.org/10.1016/j.polymdegradstab.2017.11.013  https://doi.org/10.1523/JNEUROSCI.19-09-03396.1999
            31.  Slaughter BV, Khurshid SS, Fisher OZ, et al., 2009, Hydrogels   42.  Sasagasako N, Toda K, Hollis M, et al., 1996, Myelin gene
               in regenerative medicine. Adv Mater, 21(32–33): 3307–3329.  expression in immortalized schwann cells: Relationship to
               https://doi.org/10.1002/adma.200802106             cell density and proliferation.  J Neurochem,  66(4): 1432–
                                                                  1439.
            32.  Xiao WQ, He JK, Nichol JW,  et al., 2011, Synthesis and
               characterization of photocrosslinkable gelatin and silk   https://doi.org/10.1046/j.1471-4159.1996.66041432.x
               fibroin interpenetrating polymer network hydrogels.  Acta   43.  Sasagasako N, Ohno M,Quarles RH, 1999, Evidence for
               Biomater, 7(6): 2384–2393.                         regulation of myelin protein synthesis by contact between
               https://doi.org/10.1016/j.actbio.2011.01.016       adjacent schwann cell plasma membranes.  Dev Neurosci,
                                                                  21(6): 417–422.
            33.  Dadras Chomachayi M, Solouk A, Mirzadeh H, 2019,
               Improvement of the electrospinnability of silk fibroin   https://doi.org/10.1159/000017409


            Volume 9 Issue 5 (2023)                        256                         https://doi.org/10.18063/ijb.760
   259   260   261   262   263   264   265   266   267   268   269