Page 265 - IJB-9-5
P. 265

International Journal of Bioprinting



            44.  Li G, Zhao X, Zhang L, et al., 2020, Anisotropic ridge/groove   53.  Guimarães CF, Gasperini L, Marques AP, et al., 2020, The
               microstructure for regulating morphology and biological   stiffness of  living tissues  and  its implications  for  tissue
               function of Schwann cells. Appl Mater Today, 18: 100468.  engineering. Nat Rev Mater, 5(5): 351–370.
               https://doi.org/10.1016/j.apmt.2019.100468         https://doi.org/10.1038/s41578-019-0169-1
            45.  Tylek T, Blum C, Hrynevich A, et al., 2020, Precisely defined   54.  Guvendiren M, Molde J, Soares RMD, et al., 2016, Designing
               fiber scaffolds with 40 μm porosity induce elongation driven   biomaterials for 3D printing. ACS Biomater Sci Eng, 2(10):
               M2-like polarization of human macrophages. Biofabrication,   1679–1693.
               12(2): 025007.
                                                                  https://doi.org/10.1021/acsbiomaterials.6b00121
               https://doi.org/10.1088/1758-5090/ab5f4e
                                                               55.  Kim S, Kawai T, Wang D, et al., 2016, Engineering a dual-
            46.  Dai Y, Li X, Wu R,  et al., 2018, Macrophages of different   layer  chitosan–lactide  hydrogel  to create endothelial  cell
               phenotypes influence the migration of BMSCs in PLGA   aggregate-induced  microvascular  networks  in  vitro  and
               scaffolds with different pore size. Biotechnol J, 13(1): 1700297.  increase blood perfusion in vivo. ACS Appl Mater Interfaces,
               https://doi.org/10.1002/biot.201700297             8(30): 19245–19255.
            47.  Song E, Yeon Kim S, Chun T, et al., 2006, Collagen scaffolds   https://doi.org/10.1021/acsami.6b04431
               derived  from  a  marine  source  and  their  biocompatibility.   56.  Pandit V, Zuidema JM, Venuto KN, et al., 2013, Evaluation
               Biomaterials, 27(15): 2951–2961.                   of multifunctional polysaccharide hydrogels with varying
               https://doi.org/10.1016/j.biomaterials.2006.01.015  stiffness for bone tissue engineering.  Tissue Eng Part A,
                                                                  19(21–22): 2452–2463.
            48.  Altman GH, Diaz F, Jakuba C,  et al., 2003, Silk-based
               biomaterials. Biomaterials, 24(3): 401–416.        https://doi.org/10.1089/ten.tea.2012.0644
               https://doi.org/10.1016/S0142-9612(02)00353-8   57.  Rosso G, Liashkovich I, Young P,  et al., 2017, Schwann
                                                                  cells  and  neurite  outgrowth  from  embryonic  dorsal  root
            49.  Xie H, Gu Z, Li C, et al., 2016, A novel bioceramic scaffold   ganglions are highly mechanosensitive.  Nanomedicine,
               integrating silk fibroin in calcium polyphosphate for bone   13(2): 493–501.
               tissue-engineering. Ceram Int, 42(2, Part A): 2386–2392.
                                                                  https://doi.org/10.1016/j.nano.2016.06.011
               https://doi.org/10.1016/j.ceramint.2015.10.036
                                                               58.  Wu Y-X, Ma H, Wang J-L, et al., 2021, Production of chitosan
            50.  You R, Xu Y, Liu Y, et al., 2015, Comparison of the in vitro and   scaffolds by lyophilization or electrospinning: Which is better
               in vivo degradations of silk fibroin scaffolds from mulberry   for peripheral nerve regeneration? Neural Regen Res, 16(6):
               and nonmulberry silkworms. Biomed Mater, 10(1): 015003.  1093–1098.
               https://doi.org/10.1088/1748-6041/10/1/015003
                                                                  https://doi.org/10.4103/1673-5374.300463
            51.  Guo C, Zhang J, Jordan JS, et al., 2018, Structural comparison   59.  Naghilou A, Pöttschacher L, Millesi F, et al., 2020, Correlating
               of  various  silkworm  silks:  An  insight  into  the  structure–  the secondary protein structure of natural spider silk with its
               property relationship. Biomacromolecules, 19(3): 906–917.
                                                                  guiding properties for Schwann cells. Mater Sci Eng C, 116:
               https://doi.org/10.1021/acs.biomac.7b01687         111219.
            52.  Singh D, Harding AJ, Albadawi E,  et al., 2018, Additive   https://doi.org/10.1016/j.msec.2020.111219
               manufactured  biodegradable  poly(glycerol  sebacate
               methacrylate) nerve guidance conduits. Acta Biomater, 78:
               48–63.
               https://doi.org/10.1016/j.actbio.2018.07.055



















            Volume 9 Issue 5 (2023)                        257                         https://doi.org/10.18063/ijb.760
   260   261   262   263   264   265   266   267   268   269   270