Page 265 - IJB-9-5
P. 265
International Journal of Bioprinting
44. Li G, Zhao X, Zhang L, et al., 2020, Anisotropic ridge/groove 53. Guimarães CF, Gasperini L, Marques AP, et al., 2020, The
microstructure for regulating morphology and biological stiffness of living tissues and its implications for tissue
function of Schwann cells. Appl Mater Today, 18: 100468. engineering. Nat Rev Mater, 5(5): 351–370.
https://doi.org/10.1016/j.apmt.2019.100468 https://doi.org/10.1038/s41578-019-0169-1
45. Tylek T, Blum C, Hrynevich A, et al., 2020, Precisely defined 54. Guvendiren M, Molde J, Soares RMD, et al., 2016, Designing
fiber scaffolds with 40 μm porosity induce elongation driven biomaterials for 3D printing. ACS Biomater Sci Eng, 2(10):
M2-like polarization of human macrophages. Biofabrication, 1679–1693.
12(2): 025007.
https://doi.org/10.1021/acsbiomaterials.6b00121
https://doi.org/10.1088/1758-5090/ab5f4e
55. Kim S, Kawai T, Wang D, et al., 2016, Engineering a dual-
46. Dai Y, Li X, Wu R, et al., 2018, Macrophages of different layer chitosan–lactide hydrogel to create endothelial cell
phenotypes influence the migration of BMSCs in PLGA aggregate-induced microvascular networks in vitro and
scaffolds with different pore size. Biotechnol J, 13(1): 1700297. increase blood perfusion in vivo. ACS Appl Mater Interfaces,
https://doi.org/10.1002/biot.201700297 8(30): 19245–19255.
47. Song E, Yeon Kim S, Chun T, et al., 2006, Collagen scaffolds https://doi.org/10.1021/acsami.6b04431
derived from a marine source and their biocompatibility. 56. Pandit V, Zuidema JM, Venuto KN, et al., 2013, Evaluation
Biomaterials, 27(15): 2951–2961. of multifunctional polysaccharide hydrogels with varying
https://doi.org/10.1016/j.biomaterials.2006.01.015 stiffness for bone tissue engineering. Tissue Eng Part A,
19(21–22): 2452–2463.
48. Altman GH, Diaz F, Jakuba C, et al., 2003, Silk-based
biomaterials. Biomaterials, 24(3): 401–416. https://doi.org/10.1089/ten.tea.2012.0644
https://doi.org/10.1016/S0142-9612(02)00353-8 57. Rosso G, Liashkovich I, Young P, et al., 2017, Schwann
cells and neurite outgrowth from embryonic dorsal root
49. Xie H, Gu Z, Li C, et al., 2016, A novel bioceramic scaffold ganglions are highly mechanosensitive. Nanomedicine,
integrating silk fibroin in calcium polyphosphate for bone 13(2): 493–501.
tissue-engineering. Ceram Int, 42(2, Part A): 2386–2392.
https://doi.org/10.1016/j.nano.2016.06.011
https://doi.org/10.1016/j.ceramint.2015.10.036
58. Wu Y-X, Ma H, Wang J-L, et al., 2021, Production of chitosan
50. You R, Xu Y, Liu Y, et al., 2015, Comparison of the in vitro and scaffolds by lyophilization or electrospinning: Which is better
in vivo degradations of silk fibroin scaffolds from mulberry for peripheral nerve regeneration? Neural Regen Res, 16(6):
and nonmulberry silkworms. Biomed Mater, 10(1): 015003. 1093–1098.
https://doi.org/10.1088/1748-6041/10/1/015003
https://doi.org/10.4103/1673-5374.300463
51. Guo C, Zhang J, Jordan JS, et al., 2018, Structural comparison 59. Naghilou A, Pöttschacher L, Millesi F, et al., 2020, Correlating
of various silkworm silks: An insight into the structure– the secondary protein structure of natural spider silk with its
property relationship. Biomacromolecules, 19(3): 906–917.
guiding properties for Schwann cells. Mater Sci Eng C, 116:
https://doi.org/10.1021/acs.biomac.7b01687 111219.
52. Singh D, Harding AJ, Albadawi E, et al., 2018, Additive https://doi.org/10.1016/j.msec.2020.111219
manufactured biodegradable poly(glycerol sebacate
methacrylate) nerve guidance conduits. Acta Biomater, 78:
48–63.
https://doi.org/10.1016/j.actbio.2018.07.055
Volume 9 Issue 5 (2023) 257 https://doi.org/10.18063/ijb.760

