Page 263 - IJB-9-5
P. 263
International Journal of Bioprinting
Availability of data 11. Zou S, Yao X, Shao H, et al., 2022, Nonmulberry silk fibroin-
based biomaterials: Impact on cell behavior regulation and
The data of this study are available from the corresponding tissue regeneration. Acta Biomater, 153: 68–84.
author upon reasonable request.
https://doi.org/10.1016/j.actbio.2022.09.021
References 12. Tang X, Chen X, Zhang S, et al., 2021, Silk-inspired
in situ hydrogel with anti-tumor immunity enhanced
1. Yao X, Zou S, Fan S, et al., 2022, Bioinspired silk fibroin photodynamic therapy for melanoma and infected wound
materials: From silk building blocks extraction and healing. Adv Funct Mater, 31(17): 2101320.
reconstruction to advanced biomedical applications. Mater https://doi.org/10.1002/adfm.202101320
Today Bio, 16: 100381.
https://doi.org/10.1016/j.mtbio.2022.100381 13. Naskar D, Sapru S, Ghosh AK, et al., 2021, Nonmulberry
silk proteins: Multipurpose ingredient in bio-functional
2. Hu Y, Lee A, Chang S, et al., 2022, Biomaterial-induced assembly. Biomed Mater, 16(6): 062002.
conversion of quiescent cardiomyocytes into pacemaker
cells in rats. Nat Biomed Eng, 6(4): 421–434. https://doi.org/10.1088/1748-605X/ac20a0
https://doi.org/10.1038/s41551-021-00812-y 14. Ma Y, Duan L, Sun J, et al., 2022, Oral nanotherapeutics
based on Antheraea pernyi silk fibroin for synergistic
3. Grigoryan B, Paulsen SJ, Corbett DC, et al., 2019, Multivascular treatment of ulcerative colitis. Biomaterials, 282: 121410.
networks and functional intravascular topologies within
biocompatible hydrogels. Science, 364(6439): 458–464. https://doi.org/10.1016/j.biomaterials.2022.121410
https://doi.org/10.1126/science.aav9750 15. Kim SH, Yeon YK, Lee JM, et al., 2018, Precisely printable
4. Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting and biocompatible silk fibroin bioink for digital light
of collagen to rebuild components of the human heart. processing 3D printing. Nat Commun, 9(1): 1620.
Science, 365(6452): 482–487. https://doi.org/10.1038/s41467-018-03759-y
https://doi.org/10.1126/science.aav9051 16. Li X, Zhang Q, Ye D, et al., 2017, Fabrication and
5. Yu C, Schimelman J, Wang P, et al., 2020, Photopolymerizable characterization of electrospun PCL/Antheraea pernyi silk
biomaterials and light-based 3D printing strategies for fibroin nanofibrous scaffolds. Polym Eng Sci, 57(2): 206–213.
biomedical applications. Chem Rev, 120(19): 10695–10743. https://doi.org/10.1002/pen.24402
https://doi.org/10.1021/acs.chemrev.9b00810
17. Lee K, Kweon H, Yeo J, et al., 2011, Characterization of
6. Unagolla JM, Jayasuriya AC, 2020, Hydrogel-based tyrosine-rich Antheraea pernyi silk fibroin hydrolysate. Int
3D bioprinting: A comprehensive review on cell-laden J Biol Macromol, 48(1): 223–226.
hydrogels, bioink formulations, and future perspectives.
Appl Mater Today, 18: 100479. https://doi.org/10.1016/j.ijbiomac.2010.09.020
https://doi.org/10.1016/j.apmt.2019.100479 18. Guan J, Zhu W, Liu B, et al., 2017, Comparing the
microstructure and mechanical properties of Bombyx mori
7. Kim SH, Hong H, Ajiteru O, et al., 2021, 3D bioprinted silk and Antheraea pernyi cocoon composites. Acta Biomater,
fibroin hydrogels for tissue engineering. Nat Protoc, 16(12): 47: 60–70.
5484–5532.
https://doi.org/10.1016/j.actbio.2016.09.042
https://doi.org/10.1038/s41596-021-00622-1
19. Yang K, Guan J, Numata K, et al., 2019, Integrating tough
8. Hong H, Seo YB, Kim DY, et al., 2020, Digital light Antheraea pernyi silk and strong carbon fibres for impact-
processing 3D printed silk fibroin hydrogel for cartilage critical structural composites. Nat Commun, 10(1): 3786.
tissue engineering. Biomaterials, 232:119679.
https://doi.org/10.1016/j.biomaterials.2019.119679 https://doi.org/10.1038/s41467-019-11520-2
9. Lee YJ, Lee JS, Ajiteru O, et al., 2022, Biocompatible 20. Wang J, Chen Y, Zhou G, et al., 2019, Polydopamine-coated
fluorescent silk fibroin bioink for digital light processing 3D Antheraea pernyi (A. pernyi) silk fibroin films promote cell
printing. Int J Biol Macromol, 213:317–327. adhesion and wound healing in skin tissue repair. ACS Appl
Mater Interfaces, 11(38): 34736–34743.
https://doi.org/10.1016/j.ijbiomac.2022.05.123
https://doi.org/10.1021/acsami.9b12643
10. Wu X, Zhou M, Jiang F, et al., 2021, Marginal sealing around
integral bilayer scaffolds for repairing osteochondral defects 21. Wang J, Yin Z, Xue X, et al., 2016, Natural non-mulberry silk
based on photocurable silk hydrogels. Bioact Mater, 6(11): nanoparticles for potential-controlled drug release. Int J Mol
3976–3986. Sci, 17(12): 2012.
https://doi.org/10.1016/j.bioactmat.2021.04.005 https://doi.org/10.3390/ijms17122012
Volume 9 Issue 5 (2023) 255 https://doi.org/10.18063/ijb.760

