Page 263 - IJB-9-5
P. 263

International Journal of Bioprinting



            Availability of data                               11.  Zou S, Yao X, Shao H, et al., 2022, Nonmulberry silk fibroin-
                                                                  based biomaterials: Impact on cell behavior regulation and
            The data of this study are available from the corresponding   tissue regeneration. Acta Biomater, 153: 68–84.
            author upon reasonable request.
                                                                  https://doi.org/10.1016/j.actbio.2022.09.021
            References                                         12.  Tang X, Chen X, Zhang S,  et al., 2021, Silk-inspired
                                                                  in situ hydrogel with anti-tumor immunity enhanced
            1.   Yao X, Zou S, Fan S,  et al., 2022, Bioinspired silk fibroin   photodynamic therapy for melanoma and infected wound
               materials: From silk building blocks extraction and   healing. Adv Funct Mater, 31(17): 2101320.
               reconstruction to advanced biomedical applications. Mater   https://doi.org/10.1002/adfm.202101320
               Today Bio, 16: 100381.
               https://doi.org/10.1016/j.mtbio.2022.100381     13.  Naskar D, Sapru S, Ghosh AK, et al., 2021, Nonmulberry
                                                                  silk proteins: Multipurpose ingredient in bio-functional
            2.   Hu Y, Lee A, Chang S,  et al., 2022, Biomaterial-induced   assembly. Biomed Mater, 16(6): 062002.
               conversion  of  quiescent  cardiomyocytes  into  pacemaker
               cells in rats. Nat Biomed Eng, 6(4): 421–434.      https://doi.org/10.1088/1748-605X/ac20a0
               https://doi.org/10.1038/s41551-021-00812-y      14.  Ma  Y,  Duan  L,  Sun  J,  et al.,  2022,  Oral  nanotherapeutics
                                                                  based on Antheraea pernyi silk fibroin for synergistic
            3.   Grigoryan B, Paulsen SJ, Corbett DC, et al., 2019, Multivascular   treatment of ulcerative colitis. Biomaterials, 282: 121410.
               networks and functional intravascular topologies within
               biocompatible hydrogels. Science, 364(6439): 458–464.  https://doi.org/10.1016/j.biomaterials.2022.121410
               https://doi.org/10.1126/science.aav9750         15.  Kim SH, Yeon YK, Lee JM, et al., 2018, Precisely printable
            4.   Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting   and  biocompatible  silk  fibroin  bioink  for  digital  light
               of collagen to rebuild components of the human heart.   processing 3D printing. Nat Commun, 9(1): 1620.
               Science, 365(6452): 482–487.                       https://doi.org/10.1038/s41467-018-03759-y
               https://doi.org/10.1126/science.aav9051         16.  Li  X,  Zhang  Q, Ye  D,  et al.,  2017,  Fabrication  and
            5.   Yu C, Schimelman J, Wang P, et al., 2020, Photopolymerizable   characterization of electrospun PCL/Antheraea pernyi silk
               biomaterials and light-based 3D printing strategies for   fibroin nanofibrous scaffolds. Polym Eng Sci, 57(2): 206–213.
               biomedical applications. Chem Rev, 120(19): 10695–10743.  https://doi.org/10.1002/pen.24402
               https://doi.org/10.1021/acs.chemrev.9b00810
                                                               17.  Lee K, Kweon H, Yeo J,  et al., 2011, Characterization of
            6.   Unagolla JM, Jayasuriya AC, 2020, Hydrogel-based   tyrosine-rich Antheraea pernyi silk fibroin hydrolysate. Int
               3D bioprinting: A comprehensive review on cell-laden   J Biol Macromol, 48(1): 223–226.
               hydrogels, bioink formulations, and future perspectives.
               Appl Mater Today, 18: 100479.                      https://doi.org/10.1016/j.ijbiomac.2010.09.020
               https://doi.org/10.1016/j.apmt.2019.100479      18.  Guan J, Zhu W, Liu B,  et al., 2017, Comparing the
                                                                  microstructure and mechanical properties of Bombyx mori
            7.   Kim SH, Hong H, Ajiteru O, et al., 2021, 3D bioprinted silk   and Antheraea pernyi cocoon composites.  Acta Biomater,
               fibroin hydrogels for tissue engineering. Nat Protoc, 16(12):   47: 60–70.
               5484–5532.
                                                                  https://doi.org/10.1016/j.actbio.2016.09.042
               https://doi.org/10.1038/s41596-021-00622-1
                                                               19.  Yang K, Guan J, Numata K, et al., 2019, Integrating tough
            8.   Hong H, Seo YB, Kim DY,  et al., 2020, Digital light   Antheraea pernyi silk and strong carbon fibres for impact-
               processing 3D printed silk fibroin hydrogel for cartilage   critical structural composites. Nat Commun, 10(1): 3786.
               tissue engineering. Biomaterials, 232:119679.
               https://doi.org/10.1016/j.biomaterials.2019.119679  https://doi.org/10.1038/s41467-019-11520-2
            9.   Lee YJ, Lee JS, Ajiteru O,  et al., 2022, Biocompatible   20.  Wang J, Chen Y, Zhou G, et al., 2019, Polydopamine-coated
               fluorescent silk fibroin bioink for digital light processing 3D   Antheraea pernyi (A. pernyi) silk fibroin films promote cell
               printing. Int J Biol Macromol, 213:317–327.        adhesion and wound healing in skin tissue repair. ACS Appl
                                                                  Mater Interfaces, 11(38): 34736–34743.
               https://doi.org/10.1016/j.ijbiomac.2022.05.123
                                                                  https://doi.org/10.1021/acsami.9b12643
            10.  Wu X, Zhou M, Jiang F, et al., 2021, Marginal sealing around
               integral bilayer scaffolds for repairing osteochondral defects   21.  Wang J, Yin Z, Xue X, et al., 2016, Natural non-mulberry silk
               based on photocurable silk hydrogels. Bioact Mater, 6(11):   nanoparticles for potential-controlled drug release. Int J Mol
               3976–3986.                                         Sci, 17(12): 2012.
               https://doi.org/10.1016/j.bioactmat.2021.04.005    https://doi.org/10.3390/ijms17122012

            Volume 9 Issue 5 (2023)                        255                         https://doi.org/10.18063/ijb.760
   258   259   260   261   262   263   264   265   266   267   268