Page 321 - IJB-9-5
P. 321
International Journal of Bioprinting Scaffold for engineering enthesis organ
34. Sry V, Mizutani Y, Endo G, et al., 2018, Estimation of the 44. Górecka Ż, Idaszek J, Kołbuk D, et al., 2020, The effect of
longitudinal elasticity modulus of braided synthetic fiber diameter of fibre on formation of hydrogen bonds and
rope utilizing classical laminate theory with the unit N/tex. mechanical properties of 3D-printed PCL. Mater Sci Eng C,
Appl Sci, 8(7): 1096–1096. 114(April): 111072.
https://doi.org/10.3390/app8071096 https://doi.org/10.1016/j.msec.2020.111072
35. Kempfert M, Willbold E, Loewner S, et al., 2022, 45. Brennan DA, Conte AA, Kanski G, et al., 2018, Mechanical
Polycaprolactone-based 3D-printed scaffolds as potential considerations for electrospun nanofibers in tendon and
implant materials for tendon-defect repair. J Funct Biomater, ligament repair. Adv Healthc Mater, 7(12): 1–31.
13(4): 160. https://doi.org/10.1002/adhm.201701277
https://doi.org/10.3390/jfb13040160 46. Shin HJ, Lee CH, Cho IH, et al., 2006, Electrospun PLGA
nanofiber scaffolds for articular cartilage reconstruction:
36. Guedes F, Branquinho MV, Biscaia S, et al., 2022, Gamma
irradiation processing on 3D PCL devices: A preliminary Mechanical stability, degradation and cellular responses
biocompatibility assessment. Int J Mol Sci, 23(24): under mechanical stimulation in vitro. J Biomater Sci Polym
15916–15916. Ed, 17(1): 103–119.
https://doi.org/10.1163/156856206774879126
https://doi.org/10.3390/ijms232415916
47. Sperling LE, Reis KP, Pozzobon LG, et al., 2017, Influence
37. Giacomelli C, Natali L, Nisi M, et al., 2018, Negative effects of a of random and oriented electrospun fibrous poly(lactic-co-
high tumour necrosis factor-α concentration on human gingival glycolic acid) scaffolds on neural differentiation of mouse
mesenchymal stem cell trophism: The use of natural compounds embryonic stem cells. J Biomed Mater Res Part A, 105(5):
as modulatory agents. Stem Cell Res Ther, 9(1): 1–21. 1333–1345.
https://doi.org/10.1186/s13287-018-0880-7 https://doi.org/10.1002/jbm.a.36012
38. Bowers K, Amelse L, Bow A, et al., 2022, Mesenchymal stem 48. Balestri W, Hickman GJ, Morris RH, et al., 2023, Triphasic
cell use in acute tendon injury: In vitro tenogenic potential 3D in vitro model of bone-tendon-muscle interfaces to
vs. in vivo dose response. Bioengineering, 9(8): 407–407. study their regeneration. Cells, 12(2): 313–313.
https://doi.org/10.3390/bioengineering9080407 https://doi.org/10.3390/cells12020313
39. Zhao Y, Sun Q, Wang S, et al., 2019, Spreading shape and 49. Fazeli N, Arefian E, Irani S, et al., 2021, 3D-printed PCL
area regulate the osteogenesis of mesenchymal stem cells. scaffolds coated with nanobioceramics enhance osteogenic
Tissue Eng Regen Med, 16(6): 573–583. differentiation of stem cells. ACS Omega, 6(51): 35284–
https://doi.org/10.1007/s13770-019-00213-y 35296.
40. Khan AU, Qu R, Fan T, et al., 2020, A glance on the role https://doi.org/10.1021/acsomega.1c04015
of actin in osteogenic and adipogenic differentiation of 50. Ramakrishna H, Li T, He T, et al., 2019, Tissue engineering a
mesenchymal stem cells. Stem Cell Res Ther, 11(1): 1–14. tendon-bone junction with biodegradable braided scaffolds.
https://doi.org/10.1186/s13287-020-01789-2 Biomater Res, 23(1): 1–12.
41. Siadat SM, Silverman AA, DiMarzio CA, et al., 2021, https://doi.org/10.1186/s40824-019-0160-3
Measuring collagen fibril diameter with differential 51. Rinoldi C, Fallahi A, Yazdi IK, et al., 2019, Mechanical
interference contrast microscopy. J Struct Biol, 213(1): and biochemical stimulation of 3D multilayered scaffolds
1–17. for tendon tissue engineering. ACS Biomater Sci Eng, 5(6):
https://doi.org/10.1016/j.jsb.2021.107697 2953–2964.
42. Nazeri N, Derakhshan MA, Faridi-Majidi R, et al., 2018, https://doi.org/10.1021/acsbiomaterials.8b01647
Novel electro-conductive nanocomposites based on 52. De Maria C, Giusti S, Mazzei D, et al., 2011, Squeeze
electrospun PLGA/CNT for biomedical applications. pressure bioreactor: A hydrodynamic bioreactor for
J Mater Sci Mater Med, 29(11): 1–9. noncontact stimulation of cartilage constructs. Tissue Eng
https://doi.org/10.1007/s10856-018-6176-8 Part C Methods, 17(7): 757–764.
43. Chou SF,. Woodrow KA, 2017, Relationships between https://doi.org/10.1089/ten.tec.2011.0002
mechanical properties and drug release from electrospun 53. Banik BL., Brown JL, 2020, 3D-printed bioreactor enhances
fibers of PCL and PLGA blends. J Mech Behav Biomed potential for tendon tissue engineering. Regen Eng Transl
Mater, 65(September 2016): 724–733. Med, 6(4): 419–428.
https://doi.org/10.1016/j.jmbbm.2016.09.004 https://doi.org/10.1007/s40883-019-00145-y
Volume 9 Issue 5 (2023) 313 https://doi.org/10.18063/ijb.763

