Page 321 - IJB-9-5
P. 321

International Journal of Bioprinting                                 Scaffold for engineering enthesis organ



            34.  Sry V, Mizutani Y, Endo G, et al., 2018, Estimation of the   44.  Górecka Ż, Idaszek J, Kołbuk D, et al., 2020, The effect of
               longitudinal elasticity modulus of braided synthetic fiber   diameter of fibre on formation of hydrogen bonds and
               rope utilizing classical laminate theory with the unit N/tex.   mechanical properties of 3D-printed PCL. Mater Sci Eng C,
               Appl Sci, 8(7): 1096–1096.                         114(April): 111072.
               https://doi.org/10.3390/app8071096                 https://doi.org/10.1016/j.msec.2020.111072
            35.  Kempfert M, Willbold E, Loewner S,  et al., 2022,   45.  Brennan DA, Conte AA, Kanski G, et al., 2018, Mechanical
               Polycaprolactone-based  3D-printed scaffolds as  potential   considerations for electrospun nanofibers in tendon and
               implant materials for tendon-defect repair. J Funct Biomater,   ligament repair. Adv Healthc Mater, 7(12): 1–31.
               13(4): 160.                                        https://doi.org/10.1002/adhm.201701277
               https://doi.org/10.3390/jfb13040160             46.  Shin HJ, Lee CH, Cho IH, et al., 2006, Electrospun PLGA
                                                                  nanofiber scaffolds for articular cartilage reconstruction:
            36.  Guedes F, Branquinho MV, Biscaia S, et al., 2022, Gamma
               irradiation  processing  on  3D  PCL  devices:  A  preliminary   Mechanical stability, degradation and cellular responses
               biocompatibility assessment.  Int J Mol Sci, 23(24):    under mechanical stimulation in vitro. J Biomater Sci Polym
               15916–15916.                                       Ed, 17(1): 103–119.
                                                                  https://doi.org/10.1163/156856206774879126
               https://doi.org/10.3390/ijms232415916
                                                               47.  Sperling LE, Reis KP, Pozzobon LG, et al., 2017, Influence
            37.  Giacomelli C, Natali L, Nisi M, et al., 2018, Negative effects of a   of random and oriented electrospun fibrous poly(lactic-co-
               high tumour necrosis factor-α concentration on human gingival   glycolic acid) scaffolds on neural differentiation of mouse
               mesenchymal stem cell trophism: The use of natural compounds   embryonic stem cells. J Biomed Mater Res Part A, 105(5):
               as modulatory agents. Stem Cell Res Ther, 9(1): 1–21.  1333–1345.
               https://doi.org/10.1186/s13287-018-0880-7          https://doi.org/10.1002/jbm.a.36012
            38.  Bowers K, Amelse L, Bow A, et al., 2022, Mesenchymal stem   48.  Balestri W, Hickman GJ, Morris RH, et al., 2023, Triphasic
               cell use in acute tendon injury: In vitro tenogenic potential   3D in vitro model of bone-tendon-muscle  interfaces to
               vs. in vivo dose response. Bioengineering, 9(8): 407–407.  study their regeneration. Cells, 12(2): 313–313.
               https://doi.org/10.3390/bioengineering9080407      https://doi.org/10.3390/cells12020313
            39.  Zhao Y, Sun Q, Wang S, et al., 2019, Spreading shape and   49.  Fazeli N, Arefian E, Irani S,  et  al., 2021, 3D-printed PCL
               area regulate the osteogenesis of mesenchymal stem cells.   scaffolds coated with nanobioceramics enhance osteogenic
               Tissue Eng Regen Med, 16(6): 573–583.              differentiation of  stem  cells.  ACS Omega,  6(51): 35284–
               https://doi.org/10.1007/s13770-019-00213-y         35296.
            40.  Khan AU, Qu R, Fan T, et al., 2020, A glance on the role   https://doi.org/10.1021/acsomega.1c04015
               of  actin  in  osteogenic  and  adipogenic  differentiation  of   50.  Ramakrishna H, Li T, He T, et al., 2019, Tissue engineering a
               mesenchymal stem cells. Stem Cell Res Ther, 11(1): 1–14.  tendon-bone junction with biodegradable braided scaffolds.
               https://doi.org/10.1186/s13287-020-01789-2         Biomater Res, 23(1): 1–12.
            41.  Siadat SM, Silverman AA, DiMarzio CA,  et  al., 2021,   https://doi.org/10.1186/s40824-019-0160-3
               Measuring collagen fibril diameter with differential   51.  Rinoldi  C, Fallahi  A, Yazdi  IK,  et al., 2019,  Mechanical
               interference contrast microscopy.  J Struct Biol, 213(1):    and biochemical stimulation of 3D multilayered scaffolds
               1–17.                                              for tendon tissue engineering. ACS Biomater Sci Eng, 5(6):
               https://doi.org/10.1016/j.jsb.2021.107697          2953–2964.
            42.  Nazeri  N,  Derakhshan  MA,  Faridi-Majidi  R,  et al.,  2018,   https://doi.org/10.1021/acsbiomaterials.8b01647
               Novel electro-conductive nanocomposites based on   52.  De Maria C, Giusti S, Mazzei D,  et al., 2011, Squeeze
               electrospun PLGA/CNT for biomedical applications.    pressure bioreactor: A hydrodynamic bioreactor for
               J Mater Sci Mater Med, 29(11): 1–9.                noncontact stimulation of cartilage constructs.  Tissue Eng
               https://doi.org/10.1007/s10856-018-6176-8          Part C Methods, 17(7): 757–764.
            43.  Chou SF,. Woodrow KA, 2017, Relationships between   https://doi.org/10.1089/ten.tec.2011.0002
               mechanical properties and drug release from electrospun   53.  Banik BL., Brown JL, 2020, 3D-printed bioreactor enhances
               fibers of PCL and PLGA blends.  J  Mech  Behav  Biomed   potential for tendon tissue engineering.  Regen Eng Transl
               Mater, 65(September 2016): 724–733.                Med, 6(4): 419–428.
               https://doi.org/10.1016/j.jmbbm.2016.09.004        https://doi.org/10.1007/s40883-019-00145-y



            Volume 9 Issue 5 (2023)                        313                         https://doi.org/10.18063/ijb.763
   316   317   318   319   320   321   322   323   324   325   326